Termination w.r.t. Q of the following Term Rewriting System could not be shown:
Q restricted rewrite system:
The TRS R consists of the following rules:
zeros → cons(0, n__zeros)
U11(tt, L) → s(length(activate(L)))
U21(tt) → nil
U31(tt, IL, M, N) → cons(activate(N), n__take(activate(M), activate(IL)))
and(tt, X) → activate(X)
isNat(n__0) → tt
isNat(n__length(V1)) → isNatList(activate(V1))
isNat(n__s(V1)) → isNat(activate(V1))
isNatIList(V) → isNatList(activate(V))
isNatIList(n__zeros) → tt
isNatIList(n__cons(V1, V2)) → and(isNat(activate(V1)), n__isNatIList(activate(V2)))
isNatList(n__nil) → tt
isNatList(n__cons(V1, V2)) → and(isNat(activate(V1)), n__isNatList(activate(V2)))
isNatList(n__take(V1, V2)) → and(isNat(activate(V1)), n__isNatIList(activate(V2)))
length(nil) → 0
length(cons(N, L)) → U11(and(isNatList(activate(L)), n__isNat(N)), activate(L))
take(0, IL) → U21(isNatIList(IL))
take(s(M), cons(N, IL)) → U31(and(isNatIList(activate(IL)), n__and(n__isNat(M), n__isNat(N))), activate(IL), M, N)
zeros → n__zeros
take(X1, X2) → n__take(X1, X2)
0 → n__0
length(X) → n__length(X)
s(X) → n__s(X)
cons(X1, X2) → n__cons(X1, X2)
isNatIList(X) → n__isNatIList(X)
nil → n__nil
isNatList(X) → n__isNatList(X)
isNat(X) → n__isNat(X)
and(X1, X2) → n__and(X1, X2)
activate(n__zeros) → zeros
activate(n__take(X1, X2)) → take(activate(X1), activate(X2))
activate(n__0) → 0
activate(n__length(X)) → length(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(n__isNatIList(X)) → isNatIList(X)
activate(n__nil) → nil
activate(n__isNatList(X)) → isNatList(X)
activate(n__isNat(X)) → isNat(X)
activate(n__and(X1, X2)) → and(activate(X1), X2)
activate(X) → X
Q is empty.
↳ QTRS
↳ DependencyPairsProof
Q restricted rewrite system:
The TRS R consists of the following rules:
zeros → cons(0, n__zeros)
U11(tt, L) → s(length(activate(L)))
U21(tt) → nil
U31(tt, IL, M, N) → cons(activate(N), n__take(activate(M), activate(IL)))
and(tt, X) → activate(X)
isNat(n__0) → tt
isNat(n__length(V1)) → isNatList(activate(V1))
isNat(n__s(V1)) → isNat(activate(V1))
isNatIList(V) → isNatList(activate(V))
isNatIList(n__zeros) → tt
isNatIList(n__cons(V1, V2)) → and(isNat(activate(V1)), n__isNatIList(activate(V2)))
isNatList(n__nil) → tt
isNatList(n__cons(V1, V2)) → and(isNat(activate(V1)), n__isNatList(activate(V2)))
isNatList(n__take(V1, V2)) → and(isNat(activate(V1)), n__isNatIList(activate(V2)))
length(nil) → 0
length(cons(N, L)) → U11(and(isNatList(activate(L)), n__isNat(N)), activate(L))
take(0, IL) → U21(isNatIList(IL))
take(s(M), cons(N, IL)) → U31(and(isNatIList(activate(IL)), n__and(n__isNat(M), n__isNat(N))), activate(IL), M, N)
zeros → n__zeros
take(X1, X2) → n__take(X1, X2)
0 → n__0
length(X) → n__length(X)
s(X) → n__s(X)
cons(X1, X2) → n__cons(X1, X2)
isNatIList(X) → n__isNatIList(X)
nil → n__nil
isNatList(X) → n__isNatList(X)
isNat(X) → n__isNat(X)
and(X1, X2) → n__and(X1, X2)
activate(n__zeros) → zeros
activate(n__take(X1, X2)) → take(activate(X1), activate(X2))
activate(n__0) → 0
activate(n__length(X)) → length(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(n__isNatIList(X)) → isNatIList(X)
activate(n__nil) → nil
activate(n__isNatList(X)) → isNatList(X)
activate(n__isNat(X)) → isNat(X)
activate(n__and(X1, X2)) → and(activate(X1), X2)
activate(X) → X
Q is empty.
Using Dependency Pairs [1,15] we result in the following initial DP problem:
Q DP problem:
The TRS P consists of the following rules:
U211(tt) → NIL
ISNATILIST(V) → ACTIVATE(V)
ISNAT(n__length(V1)) → ISNATLIST(activate(V1))
ACTIVATE(n__take(X1, X2)) → TAKE(activate(X1), activate(X2))
ISNATILIST(n__cons(V1, V2)) → ACTIVATE(V2)
U311(tt, IL, M, N) → ACTIVATE(IL)
ACTIVATE(n__s(X)) → ACTIVATE(X)
ISNATILIST(n__cons(V1, V2)) → AND(isNat(activate(V1)), n__isNatIList(activate(V2)))
ISNATLIST(n__take(V1, V2)) → ACTIVATE(V2)
ISNATILIST(n__cons(V1, V2)) → ACTIVATE(V1)
ISNATILIST(V) → ISNATLIST(activate(V))
ACTIVATE(n__0) → 01
LENGTH(cons(N, L)) → U111(and(isNatList(activate(L)), n__isNat(N)), activate(L))
U311(tt, IL, M, N) → ACTIVATE(M)
LENGTH(nil) → 01
ACTIVATE(n__zeros) → ZEROS
ISNATLIST(n__cons(V1, V2)) → ACTIVATE(V1)
ACTIVATE(n__and(X1, X2)) → AND(activate(X1), X2)
ACTIVATE(n__take(X1, X2)) → ACTIVATE(X1)
ACTIVATE(n__nil) → NIL
TAKE(0, IL) → ISNATILIST(IL)
ACTIVATE(n__s(X)) → S(activate(X))
ACTIVATE(n__cons(X1, X2)) → CONS(activate(X1), X2)
ISNAT(n__s(V1)) → ACTIVATE(V1)
AND(tt, X) → ACTIVATE(X)
LENGTH(cons(N, L)) → ISNATLIST(activate(L))
TAKE(s(M), cons(N, IL)) → ISNATILIST(activate(IL))
ISNATLIST(n__cons(V1, V2)) → ISNAT(activate(V1))
ISNATLIST(n__cons(V1, V2)) → AND(isNat(activate(V1)), n__isNatList(activate(V2)))
ACTIVATE(n__isNatIList(X)) → ISNATILIST(X)
TAKE(s(M), cons(N, IL)) → AND(isNatIList(activate(IL)), n__and(n__isNat(M), n__isNat(N)))
ISNATLIST(n__cons(V1, V2)) → ACTIVATE(V2)
ISNATLIST(n__take(V1, V2)) → ACTIVATE(V1)
ISNATILIST(n__cons(V1, V2)) → ISNAT(activate(V1))
ACTIVATE(n__and(X1, X2)) → ACTIVATE(X1)
U311(tt, IL, M, N) → CONS(activate(N), n__take(activate(M), activate(IL)))
ACTIVATE(n__isNatList(X)) → ISNATLIST(X)
ACTIVATE(n__cons(X1, X2)) → ACTIVATE(X1)
ISNATLIST(n__take(V1, V2)) → ISNAT(activate(V1))
TAKE(s(M), cons(N, IL)) → U311(and(isNatIList(activate(IL)), n__and(n__isNat(M), n__isNat(N))), activate(IL), M, N)
U111(tt, L) → ACTIVATE(L)
TAKE(0, IL) → U211(isNatIList(IL))
LENGTH(cons(N, L)) → ACTIVATE(L)
ISNATLIST(n__take(V1, V2)) → AND(isNat(activate(V1)), n__isNatIList(activate(V2)))
ACTIVATE(n__length(X)) → LENGTH(activate(X))
ISNAT(n__s(V1)) → ISNAT(activate(V1))
U111(tt, L) → LENGTH(activate(L))
ACTIVATE(n__take(X1, X2)) → ACTIVATE(X2)
TAKE(s(M), cons(N, IL)) → ACTIVATE(IL)
ACTIVATE(n__isNat(X)) → ISNAT(X)
U111(tt, L) → S(length(activate(L)))
ZEROS → CONS(0, n__zeros)
U311(tt, IL, M, N) → ACTIVATE(N)
ZEROS → 01
ISNAT(n__length(V1)) → ACTIVATE(V1)
ACTIVATE(n__length(X)) → ACTIVATE(X)
LENGTH(cons(N, L)) → AND(isNatList(activate(L)), n__isNat(N))
The TRS R consists of the following rules:
zeros → cons(0, n__zeros)
U11(tt, L) → s(length(activate(L)))
U21(tt) → nil
U31(tt, IL, M, N) → cons(activate(N), n__take(activate(M), activate(IL)))
and(tt, X) → activate(X)
isNat(n__0) → tt
isNat(n__length(V1)) → isNatList(activate(V1))
isNat(n__s(V1)) → isNat(activate(V1))
isNatIList(V) → isNatList(activate(V))
isNatIList(n__zeros) → tt
isNatIList(n__cons(V1, V2)) → and(isNat(activate(V1)), n__isNatIList(activate(V2)))
isNatList(n__nil) → tt
isNatList(n__cons(V1, V2)) → and(isNat(activate(V1)), n__isNatList(activate(V2)))
isNatList(n__take(V1, V2)) → and(isNat(activate(V1)), n__isNatIList(activate(V2)))
length(nil) → 0
length(cons(N, L)) → U11(and(isNatList(activate(L)), n__isNat(N)), activate(L))
take(0, IL) → U21(isNatIList(IL))
take(s(M), cons(N, IL)) → U31(and(isNatIList(activate(IL)), n__and(n__isNat(M), n__isNat(N))), activate(IL), M, N)
zeros → n__zeros
take(X1, X2) → n__take(X1, X2)
0 → n__0
length(X) → n__length(X)
s(X) → n__s(X)
cons(X1, X2) → n__cons(X1, X2)
isNatIList(X) → n__isNatIList(X)
nil → n__nil
isNatList(X) → n__isNatList(X)
isNat(X) → n__isNat(X)
and(X1, X2) → n__and(X1, X2)
activate(n__zeros) → zeros
activate(n__take(X1, X2)) → take(activate(X1), activate(X2))
activate(n__0) → 0
activate(n__length(X)) → length(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(n__isNatIList(X)) → isNatIList(X)
activate(n__nil) → nil
activate(n__isNatList(X)) → isNatList(X)
activate(n__isNat(X)) → isNat(X)
activate(n__and(X1, X2)) → and(activate(X1), X2)
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
Q DP problem:
The TRS P consists of the following rules:
U211(tt) → NIL
ISNATILIST(V) → ACTIVATE(V)
ISNAT(n__length(V1)) → ISNATLIST(activate(V1))
ACTIVATE(n__take(X1, X2)) → TAKE(activate(X1), activate(X2))
ISNATILIST(n__cons(V1, V2)) → ACTIVATE(V2)
U311(tt, IL, M, N) → ACTIVATE(IL)
ACTIVATE(n__s(X)) → ACTIVATE(X)
ISNATILIST(n__cons(V1, V2)) → AND(isNat(activate(V1)), n__isNatIList(activate(V2)))
ISNATLIST(n__take(V1, V2)) → ACTIVATE(V2)
ISNATILIST(n__cons(V1, V2)) → ACTIVATE(V1)
ISNATILIST(V) → ISNATLIST(activate(V))
ACTIVATE(n__0) → 01
LENGTH(cons(N, L)) → U111(and(isNatList(activate(L)), n__isNat(N)), activate(L))
U311(tt, IL, M, N) → ACTIVATE(M)
LENGTH(nil) → 01
ACTIVATE(n__zeros) → ZEROS
ISNATLIST(n__cons(V1, V2)) → ACTIVATE(V1)
ACTIVATE(n__and(X1, X2)) → AND(activate(X1), X2)
ACTIVATE(n__take(X1, X2)) → ACTIVATE(X1)
ACTIVATE(n__nil) → NIL
TAKE(0, IL) → ISNATILIST(IL)
ACTIVATE(n__s(X)) → S(activate(X))
ACTIVATE(n__cons(X1, X2)) → CONS(activate(X1), X2)
ISNAT(n__s(V1)) → ACTIVATE(V1)
AND(tt, X) → ACTIVATE(X)
LENGTH(cons(N, L)) → ISNATLIST(activate(L))
TAKE(s(M), cons(N, IL)) → ISNATILIST(activate(IL))
ISNATLIST(n__cons(V1, V2)) → ISNAT(activate(V1))
ISNATLIST(n__cons(V1, V2)) → AND(isNat(activate(V1)), n__isNatList(activate(V2)))
ACTIVATE(n__isNatIList(X)) → ISNATILIST(X)
TAKE(s(M), cons(N, IL)) → AND(isNatIList(activate(IL)), n__and(n__isNat(M), n__isNat(N)))
ISNATLIST(n__cons(V1, V2)) → ACTIVATE(V2)
ISNATLIST(n__take(V1, V2)) → ACTIVATE(V1)
ISNATILIST(n__cons(V1, V2)) → ISNAT(activate(V1))
ACTIVATE(n__and(X1, X2)) → ACTIVATE(X1)
U311(tt, IL, M, N) → CONS(activate(N), n__take(activate(M), activate(IL)))
ACTIVATE(n__isNatList(X)) → ISNATLIST(X)
ACTIVATE(n__cons(X1, X2)) → ACTIVATE(X1)
ISNATLIST(n__take(V1, V2)) → ISNAT(activate(V1))
TAKE(s(M), cons(N, IL)) → U311(and(isNatIList(activate(IL)), n__and(n__isNat(M), n__isNat(N))), activate(IL), M, N)
U111(tt, L) → ACTIVATE(L)
TAKE(0, IL) → U211(isNatIList(IL))
LENGTH(cons(N, L)) → ACTIVATE(L)
ISNATLIST(n__take(V1, V2)) → AND(isNat(activate(V1)), n__isNatIList(activate(V2)))
ACTIVATE(n__length(X)) → LENGTH(activate(X))
ISNAT(n__s(V1)) → ISNAT(activate(V1))
U111(tt, L) → LENGTH(activate(L))
ACTIVATE(n__take(X1, X2)) → ACTIVATE(X2)
TAKE(s(M), cons(N, IL)) → ACTIVATE(IL)
ACTIVATE(n__isNat(X)) → ISNAT(X)
U111(tt, L) → S(length(activate(L)))
ZEROS → CONS(0, n__zeros)
U311(tt, IL, M, N) → ACTIVATE(N)
ZEROS → 01
ISNAT(n__length(V1)) → ACTIVATE(V1)
ACTIVATE(n__length(X)) → ACTIVATE(X)
LENGTH(cons(N, L)) → AND(isNatList(activate(L)), n__isNat(N))
The TRS R consists of the following rules:
zeros → cons(0, n__zeros)
U11(tt, L) → s(length(activate(L)))
U21(tt) → nil
U31(tt, IL, M, N) → cons(activate(N), n__take(activate(M), activate(IL)))
and(tt, X) → activate(X)
isNat(n__0) → tt
isNat(n__length(V1)) → isNatList(activate(V1))
isNat(n__s(V1)) → isNat(activate(V1))
isNatIList(V) → isNatList(activate(V))
isNatIList(n__zeros) → tt
isNatIList(n__cons(V1, V2)) → and(isNat(activate(V1)), n__isNatIList(activate(V2)))
isNatList(n__nil) → tt
isNatList(n__cons(V1, V2)) → and(isNat(activate(V1)), n__isNatList(activate(V2)))
isNatList(n__take(V1, V2)) → and(isNat(activate(V1)), n__isNatIList(activate(V2)))
length(nil) → 0
length(cons(N, L)) → U11(and(isNatList(activate(L)), n__isNat(N)), activate(L))
take(0, IL) → U21(isNatIList(IL))
take(s(M), cons(N, IL)) → U31(and(isNatIList(activate(IL)), n__and(n__isNat(M), n__isNat(N))), activate(IL), M, N)
zeros → n__zeros
take(X1, X2) → n__take(X1, X2)
0 → n__0
length(X) → n__length(X)
s(X) → n__s(X)
cons(X1, X2) → n__cons(X1, X2)
isNatIList(X) → n__isNatIList(X)
nil → n__nil
isNatList(X) → n__isNatList(X)
isNat(X) → n__isNat(X)
and(X1, X2) → n__and(X1, X2)
activate(n__zeros) → zeros
activate(n__take(X1, X2)) → take(activate(X1), activate(X2))
activate(n__0) → 0
activate(n__length(X)) → length(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(n__isNatIList(X)) → isNatIList(X)
activate(n__nil) → nil
activate(n__isNatList(X)) → isNatList(X)
activate(n__isNat(X)) → isNat(X)
activate(n__and(X1, X2)) → and(activate(X1), X2)
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 1 SCC with 12 less nodes.
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
Q DP problem:
The TRS P consists of the following rules:
ISNATLIST(n__take(V1, V2)) → ACTIVATE(V1)
ISNATILIST(n__cons(V1, V2)) → ISNAT(activate(V1))
ISNATILIST(V) → ACTIVATE(V)
ISNAT(n__length(V1)) → ISNATLIST(activate(V1))
ACTIVATE(n__take(X1, X2)) → TAKE(activate(X1), activate(X2))
ISNATILIST(n__cons(V1, V2)) → ACTIVATE(V2)
U311(tt, IL, M, N) → ACTIVATE(IL)
ACTIVATE(n__and(X1, X2)) → ACTIVATE(X1)
ACTIVATE(n__s(X)) → ACTIVATE(X)
ISNATILIST(n__cons(V1, V2)) → AND(isNat(activate(V1)), n__isNatIList(activate(V2)))
ISNATLIST(n__take(V1, V2)) → ACTIVATE(V2)
ACTIVATE(n__cons(X1, X2)) → ACTIVATE(X1)
ACTIVATE(n__isNatList(X)) → ISNATLIST(X)
ISNATILIST(n__cons(V1, V2)) → ACTIVATE(V1)
ISNATILIST(V) → ISNATLIST(activate(V))
ISNATLIST(n__take(V1, V2)) → ISNAT(activate(V1))
LENGTH(cons(N, L)) → U111(and(isNatList(activate(L)), n__isNat(N)), activate(L))
TAKE(s(M), cons(N, IL)) → U311(and(isNatIList(activate(IL)), n__and(n__isNat(M), n__isNat(N))), activate(IL), M, N)
U311(tt, IL, M, N) → ACTIVATE(M)
U111(tt, L) → ACTIVATE(L)
ISNATLIST(n__cons(V1, V2)) → ACTIVATE(V1)
LENGTH(cons(N, L)) → ACTIVATE(L)
ACTIVATE(n__and(X1, X2)) → AND(activate(X1), X2)
ISNATLIST(n__take(V1, V2)) → AND(isNat(activate(V1)), n__isNatIList(activate(V2)))
ACTIVATE(n__length(X)) → LENGTH(activate(X))
ACTIVATE(n__take(X1, X2)) → ACTIVATE(X1)
ISNAT(n__s(V1)) → ISNAT(activate(V1))
U111(tt, L) → LENGTH(activate(L))
TAKE(0, IL) → ISNATILIST(IL)
ISNAT(n__s(V1)) → ACTIVATE(V1)
AND(tt, X) → ACTIVATE(X)
TAKE(s(M), cons(N, IL)) → ISNATILIST(activate(IL))
LENGTH(cons(N, L)) → ISNATLIST(activate(L))
ACTIVATE(n__take(X1, X2)) → ACTIVATE(X2)
TAKE(s(M), cons(N, IL)) → ACTIVATE(IL)
ISNATLIST(n__cons(V1, V2)) → ISNAT(activate(V1))
ACTIVATE(n__isNat(X)) → ISNAT(X)
ISNATLIST(n__cons(V1, V2)) → AND(isNat(activate(V1)), n__isNatList(activate(V2)))
TAKE(s(M), cons(N, IL)) → AND(isNatIList(activate(IL)), n__and(n__isNat(M), n__isNat(N)))
ACTIVATE(n__isNatIList(X)) → ISNATILIST(X)
ISNATLIST(n__cons(V1, V2)) → ACTIVATE(V2)
U311(tt, IL, M, N) → ACTIVATE(N)
ISNAT(n__length(V1)) → ACTIVATE(V1)
ACTIVATE(n__length(X)) → ACTIVATE(X)
LENGTH(cons(N, L)) → AND(isNatList(activate(L)), n__isNat(N))
The TRS R consists of the following rules:
zeros → cons(0, n__zeros)
U11(tt, L) → s(length(activate(L)))
U21(tt) → nil
U31(tt, IL, M, N) → cons(activate(N), n__take(activate(M), activate(IL)))
and(tt, X) → activate(X)
isNat(n__0) → tt
isNat(n__length(V1)) → isNatList(activate(V1))
isNat(n__s(V1)) → isNat(activate(V1))
isNatIList(V) → isNatList(activate(V))
isNatIList(n__zeros) → tt
isNatIList(n__cons(V1, V2)) → and(isNat(activate(V1)), n__isNatIList(activate(V2)))
isNatList(n__nil) → tt
isNatList(n__cons(V1, V2)) → and(isNat(activate(V1)), n__isNatList(activate(V2)))
isNatList(n__take(V1, V2)) → and(isNat(activate(V1)), n__isNatIList(activate(V2)))
length(nil) → 0
length(cons(N, L)) → U11(and(isNatList(activate(L)), n__isNat(N)), activate(L))
take(0, IL) → U21(isNatIList(IL))
take(s(M), cons(N, IL)) → U31(and(isNatIList(activate(IL)), n__and(n__isNat(M), n__isNat(N))), activate(IL), M, N)
zeros → n__zeros
take(X1, X2) → n__take(X1, X2)
0 → n__0
length(X) → n__length(X)
s(X) → n__s(X)
cons(X1, X2) → n__cons(X1, X2)
isNatIList(X) → n__isNatIList(X)
nil → n__nil
isNatList(X) → n__isNatList(X)
isNat(X) → n__isNat(X)
and(X1, X2) → n__and(X1, X2)
activate(n__zeros) → zeros
activate(n__take(X1, X2)) → take(activate(X1), activate(X2))
activate(n__0) → 0
activate(n__length(X)) → length(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(n__isNatIList(X)) → isNatIList(X)
activate(n__nil) → nil
activate(n__isNatList(X)) → isNatList(X)
activate(n__isNat(X)) → isNat(X)
activate(n__and(X1, X2)) → and(activate(X1), X2)
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].
The following pairs can be oriented strictly and are deleted.
ISNATLIST(n__take(V1, V2)) → ACTIVATE(V1)
ACTIVATE(n__take(X1, X2)) → TAKE(activate(X1), activate(X2))
ISNATLIST(n__take(V1, V2)) → ACTIVATE(V2)
ISNATLIST(n__take(V1, V2)) → ISNAT(activate(V1))
ISNATLIST(n__take(V1, V2)) → AND(isNat(activate(V1)), n__isNatIList(activate(V2)))
ACTIVATE(n__take(X1, X2)) → ACTIVATE(X1)
ACTIVATE(n__take(X1, X2)) → ACTIVATE(X2)
The remaining pairs can at least be oriented weakly.
ISNATILIST(n__cons(V1, V2)) → ISNAT(activate(V1))
ISNATILIST(V) → ACTIVATE(V)
ISNAT(n__length(V1)) → ISNATLIST(activate(V1))
ISNATILIST(n__cons(V1, V2)) → ACTIVATE(V2)
U311(tt, IL, M, N) → ACTIVATE(IL)
ACTIVATE(n__and(X1, X2)) → ACTIVATE(X1)
ACTIVATE(n__s(X)) → ACTIVATE(X)
ISNATILIST(n__cons(V1, V2)) → AND(isNat(activate(V1)), n__isNatIList(activate(V2)))
ACTIVATE(n__cons(X1, X2)) → ACTIVATE(X1)
ACTIVATE(n__isNatList(X)) → ISNATLIST(X)
ISNATILIST(n__cons(V1, V2)) → ACTIVATE(V1)
ISNATILIST(V) → ISNATLIST(activate(V))
LENGTH(cons(N, L)) → U111(and(isNatList(activate(L)), n__isNat(N)), activate(L))
TAKE(s(M), cons(N, IL)) → U311(and(isNatIList(activate(IL)), n__and(n__isNat(M), n__isNat(N))), activate(IL), M, N)
U311(tt, IL, M, N) → ACTIVATE(M)
U111(tt, L) → ACTIVATE(L)
ISNATLIST(n__cons(V1, V2)) → ACTIVATE(V1)
LENGTH(cons(N, L)) → ACTIVATE(L)
ACTIVATE(n__and(X1, X2)) → AND(activate(X1), X2)
ACTIVATE(n__length(X)) → LENGTH(activate(X))
ISNAT(n__s(V1)) → ISNAT(activate(V1))
U111(tt, L) → LENGTH(activate(L))
TAKE(0, IL) → ISNATILIST(IL)
ISNAT(n__s(V1)) → ACTIVATE(V1)
AND(tt, X) → ACTIVATE(X)
TAKE(s(M), cons(N, IL)) → ISNATILIST(activate(IL))
LENGTH(cons(N, L)) → ISNATLIST(activate(L))
TAKE(s(M), cons(N, IL)) → ACTIVATE(IL)
ISNATLIST(n__cons(V1, V2)) → ISNAT(activate(V1))
ACTIVATE(n__isNat(X)) → ISNAT(X)
ISNATLIST(n__cons(V1, V2)) → AND(isNat(activate(V1)), n__isNatList(activate(V2)))
TAKE(s(M), cons(N, IL)) → AND(isNatIList(activate(IL)), n__and(n__isNat(M), n__isNat(N)))
ACTIVATE(n__isNatIList(X)) → ISNATILIST(X)
ISNATLIST(n__cons(V1, V2)) → ACTIVATE(V2)
U311(tt, IL, M, N) → ACTIVATE(N)
ISNAT(n__length(V1)) → ACTIVATE(V1)
ACTIVATE(n__length(X)) → ACTIVATE(X)
LENGTH(cons(N, L)) → AND(isNatList(activate(L)), n__isNat(N))
Used ordering: Polynomial interpretation with max and min functions [25]:
POL(0) = 0
POL(ACTIVATE(x1)) = x1
POL(AND(x1, x2)) = x2
POL(ISNAT(x1)) = x1
POL(ISNATILIST(x1)) = x1
POL(ISNATLIST(x1)) = x1
POL(LENGTH(x1)) = x1
POL(TAKE(x1, x2)) = x1 + x2
POL(U11(x1, x2)) = x2
POL(U111(x1, x2)) = x2
POL(U21(x1)) = 1
POL(U31(x1, x2, x3, x4)) = 1 + x2 + x3 + x4
POL(U311(x1, x2, x3, x4)) = x2 + x3 + x4
POL(activate(x1)) = x1
POL(and(x1, x2)) = x1 + x2
POL(cons(x1, x2)) = x1 + x2
POL(isNat(x1)) = x1
POL(isNatIList(x1)) = x1
POL(isNatList(x1)) = x1
POL(length(x1)) = x1
POL(n__0) = 0
POL(n__and(x1, x2)) = x1 + x2
POL(n__cons(x1, x2)) = x1 + x2
POL(n__isNat(x1)) = x1
POL(n__isNatIList(x1)) = x1
POL(n__isNatList(x1)) = x1
POL(n__length(x1)) = x1
POL(n__nil) = 0
POL(n__s(x1)) = x1
POL(n__take(x1, x2)) = 1 + x1 + x2
POL(n__zeros) = 0
POL(nil) = 0
POL(s(x1)) = x1
POL(take(x1, x2)) = 1 + x1 + x2
POL(tt) = 0
POL(zeros) = 0
The following usable rules [17] were oriented:
isNatIList(X) → n__isNatIList(X)
cons(X1, X2) → n__cons(X1, X2)
isNatList(X) → n__isNatList(X)
nil → n__nil
and(X1, X2) → n__and(X1, X2)
isNat(X) → n__isNat(X)
activate(n__take(X1, X2)) → take(activate(X1), activate(X2))
activate(n__zeros) → zeros
take(0, IL) → U21(isNatIList(IL))
length(cons(N, L)) → U11(and(isNatList(activate(L)), n__isNat(N)), activate(L))
zeros → n__zeros
take(s(M), cons(N, IL)) → U31(and(isNatIList(activate(IL)), n__and(n__isNat(M), n__isNat(N))), activate(IL), M, N)
0 → n__0
take(X1, X2) → n__take(X1, X2)
s(X) → n__s(X)
length(X) → n__length(X)
activate(X) → X
activate(n__0) → 0
activate(n__length(X)) → length(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
isNatList(n__cons(V1, V2)) → and(isNat(activate(V1)), n__isNatList(activate(V2)))
isNatIList(V) → isNatList(activate(V))
activate(n__isNat(X)) → isNat(X)
activate(n__and(X1, X2)) → and(activate(X1), X2)
isNat(n__s(V1)) → isNat(activate(V1))
and(tt, X) → activate(X)
isNatIList(n__cons(V1, V2)) → and(isNat(activate(V1)), n__isNatIList(activate(V2)))
isNatList(n__take(V1, V2)) → and(isNat(activate(V1)), n__isNatIList(activate(V2)))
activate(n__isNatIList(X)) → isNatIList(X)
isNat(n__length(V1)) → isNatList(activate(V1))
activate(n__isNatList(X)) → isNatList(X)
activate(n__nil) → nil
isNat(n__0) → tt
U31(tt, IL, M, N) → cons(activate(N), n__take(activate(M), activate(IL)))
U21(tt) → nil
U11(tt, L) → s(length(activate(L)))
zeros → cons(0, n__zeros)
length(nil) → 0
isNatList(n__nil) → tt
isNatIList(n__zeros) → tt
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
Q DP problem:
The TRS P consists of the following rules:
ISNATILIST(n__cons(V1, V2)) → ISNAT(activate(V1))
ISNATILIST(V) → ACTIVATE(V)
ISNAT(n__length(V1)) → ISNATLIST(activate(V1))
ISNATILIST(n__cons(V1, V2)) → ACTIVATE(V2)
U311(tt, IL, M, N) → ACTIVATE(IL)
ACTIVATE(n__s(X)) → ACTIVATE(X)
ACTIVATE(n__and(X1, X2)) → ACTIVATE(X1)
ISNATILIST(n__cons(V1, V2)) → AND(isNat(activate(V1)), n__isNatIList(activate(V2)))
ACTIVATE(n__isNatList(X)) → ISNATLIST(X)
ACTIVATE(n__cons(X1, X2)) → ACTIVATE(X1)
ISNATILIST(V) → ISNATLIST(activate(V))
ISNATILIST(n__cons(V1, V2)) → ACTIVATE(V1)
LENGTH(cons(N, L)) → U111(and(isNatList(activate(L)), n__isNat(N)), activate(L))
TAKE(s(M), cons(N, IL)) → U311(and(isNatIList(activate(IL)), n__and(n__isNat(M), n__isNat(N))), activate(IL), M, N)
U311(tt, IL, M, N) → ACTIVATE(M)
U111(tt, L) → ACTIVATE(L)
ISNATLIST(n__cons(V1, V2)) → ACTIVATE(V1)
LENGTH(cons(N, L)) → ACTIVATE(L)
ACTIVATE(n__and(X1, X2)) → AND(activate(X1), X2)
ACTIVATE(n__length(X)) → LENGTH(activate(X))
ISNAT(n__s(V1)) → ISNAT(activate(V1))
U111(tt, L) → LENGTH(activate(L))
TAKE(0, IL) → ISNATILIST(IL)
ISNAT(n__s(V1)) → ACTIVATE(V1)
AND(tt, X) → ACTIVATE(X)
LENGTH(cons(N, L)) → ISNATLIST(activate(L))
TAKE(s(M), cons(N, IL)) → ISNATILIST(activate(IL))
ISNATLIST(n__cons(V1, V2)) → ISNAT(activate(V1))
TAKE(s(M), cons(N, IL)) → ACTIVATE(IL)
ACTIVATE(n__isNat(X)) → ISNAT(X)
ISNATLIST(n__cons(V1, V2)) → AND(isNat(activate(V1)), n__isNatList(activate(V2)))
ACTIVATE(n__isNatIList(X)) → ISNATILIST(X)
TAKE(s(M), cons(N, IL)) → AND(isNatIList(activate(IL)), n__and(n__isNat(M), n__isNat(N)))
ISNATLIST(n__cons(V1, V2)) → ACTIVATE(V2)
U311(tt, IL, M, N) → ACTIVATE(N)
ISNAT(n__length(V1)) → ACTIVATE(V1)
ACTIVATE(n__length(X)) → ACTIVATE(X)
LENGTH(cons(N, L)) → AND(isNatList(activate(L)), n__isNat(N))
The TRS R consists of the following rules:
zeros → cons(0, n__zeros)
U11(tt, L) → s(length(activate(L)))
U21(tt) → nil
U31(tt, IL, M, N) → cons(activate(N), n__take(activate(M), activate(IL)))
and(tt, X) → activate(X)
isNat(n__0) → tt
isNat(n__length(V1)) → isNatList(activate(V1))
isNat(n__s(V1)) → isNat(activate(V1))
isNatIList(V) → isNatList(activate(V))
isNatIList(n__zeros) → tt
isNatIList(n__cons(V1, V2)) → and(isNat(activate(V1)), n__isNatIList(activate(V2)))
isNatList(n__nil) → tt
isNatList(n__cons(V1, V2)) → and(isNat(activate(V1)), n__isNatList(activate(V2)))
isNatList(n__take(V1, V2)) → and(isNat(activate(V1)), n__isNatIList(activate(V2)))
length(nil) → 0
length(cons(N, L)) → U11(and(isNatList(activate(L)), n__isNat(N)), activate(L))
take(0, IL) → U21(isNatIList(IL))
take(s(M), cons(N, IL)) → U31(and(isNatIList(activate(IL)), n__and(n__isNat(M), n__isNat(N))), activate(IL), M, N)
zeros → n__zeros
take(X1, X2) → n__take(X1, X2)
0 → n__0
length(X) → n__length(X)
s(X) → n__s(X)
cons(X1, X2) → n__cons(X1, X2)
isNatIList(X) → n__isNatIList(X)
nil → n__nil
isNatList(X) → n__isNatList(X)
isNat(X) → n__isNat(X)
and(X1, X2) → n__and(X1, X2)
activate(n__zeros) → zeros
activate(n__take(X1, X2)) → take(activate(X1), activate(X2))
activate(n__0) → 0
activate(n__length(X)) → length(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(n__isNatIList(X)) → isNatIList(X)
activate(n__nil) → nil
activate(n__isNatList(X)) → isNatList(X)
activate(n__isNat(X)) → isNat(X)
activate(n__and(X1, X2)) → and(activate(X1), X2)
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 1 SCC with 8 less nodes.
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
Q DP problem:
The TRS P consists of the following rules:
ISNATILIST(n__cons(V1, V2)) → ISNAT(activate(V1))
ISNATILIST(V) → ACTIVATE(V)
ISNAT(n__length(V1)) → ISNATLIST(activate(V1))
ISNATILIST(n__cons(V1, V2)) → ACTIVATE(V2)
ACTIVATE(n__s(X)) → ACTIVATE(X)
ACTIVATE(n__and(X1, X2)) → ACTIVATE(X1)
ISNATILIST(n__cons(V1, V2)) → AND(isNat(activate(V1)), n__isNatIList(activate(V2)))
ACTIVATE(n__cons(X1, X2)) → ACTIVATE(X1)
ACTIVATE(n__isNatList(X)) → ISNATLIST(X)
ISNATILIST(n__cons(V1, V2)) → ACTIVATE(V1)
ISNATILIST(V) → ISNATLIST(activate(V))
LENGTH(cons(N, L)) → U111(and(isNatList(activate(L)), n__isNat(N)), activate(L))
U111(tt, L) → ACTIVATE(L)
ISNATLIST(n__cons(V1, V2)) → ACTIVATE(V1)
LENGTH(cons(N, L)) → ACTIVATE(L)
ACTIVATE(n__and(X1, X2)) → AND(activate(X1), X2)
ACTIVATE(n__length(X)) → LENGTH(activate(X))
U111(tt, L) → LENGTH(activate(L))
ISNAT(n__s(V1)) → ISNAT(activate(V1))
AND(tt, X) → ACTIVATE(X)
ISNAT(n__s(V1)) → ACTIVATE(V1)
LENGTH(cons(N, L)) → ISNATLIST(activate(L))
ISNATLIST(n__cons(V1, V2)) → ISNAT(activate(V1))
ACTIVATE(n__isNat(X)) → ISNAT(X)
ISNATLIST(n__cons(V1, V2)) → AND(isNat(activate(V1)), n__isNatList(activate(V2)))
ACTIVATE(n__isNatIList(X)) → ISNATILIST(X)
ISNATLIST(n__cons(V1, V2)) → ACTIVATE(V2)
ISNAT(n__length(V1)) → ACTIVATE(V1)
ACTIVATE(n__length(X)) → ACTIVATE(X)
LENGTH(cons(N, L)) → AND(isNatList(activate(L)), n__isNat(N))
The TRS R consists of the following rules:
zeros → cons(0, n__zeros)
U11(tt, L) → s(length(activate(L)))
U21(tt) → nil
U31(tt, IL, M, N) → cons(activate(N), n__take(activate(M), activate(IL)))
and(tt, X) → activate(X)
isNat(n__0) → tt
isNat(n__length(V1)) → isNatList(activate(V1))
isNat(n__s(V1)) → isNat(activate(V1))
isNatIList(V) → isNatList(activate(V))
isNatIList(n__zeros) → tt
isNatIList(n__cons(V1, V2)) → and(isNat(activate(V1)), n__isNatIList(activate(V2)))
isNatList(n__nil) → tt
isNatList(n__cons(V1, V2)) → and(isNat(activate(V1)), n__isNatList(activate(V2)))
isNatList(n__take(V1, V2)) → and(isNat(activate(V1)), n__isNatIList(activate(V2)))
length(nil) → 0
length(cons(N, L)) → U11(and(isNatList(activate(L)), n__isNat(N)), activate(L))
take(0, IL) → U21(isNatIList(IL))
take(s(M), cons(N, IL)) → U31(and(isNatIList(activate(IL)), n__and(n__isNat(M), n__isNat(N))), activate(IL), M, N)
zeros → n__zeros
take(X1, X2) → n__take(X1, X2)
0 → n__0
length(X) → n__length(X)
s(X) → n__s(X)
cons(X1, X2) → n__cons(X1, X2)
isNatIList(X) → n__isNatIList(X)
nil → n__nil
isNatList(X) → n__isNatList(X)
isNat(X) → n__isNat(X)
and(X1, X2) → n__and(X1, X2)
activate(n__zeros) → zeros
activate(n__take(X1, X2)) → take(activate(X1), activate(X2))
activate(n__0) → 0
activate(n__length(X)) → length(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(n__isNatIList(X)) → isNatIList(X)
activate(n__nil) → nil
activate(n__isNatList(X)) → isNatList(X)
activate(n__isNat(X)) → isNat(X)
activate(n__and(X1, X2)) → and(activate(X1), X2)
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].
The following pairs can be oriented strictly and are deleted.
ISNATILIST(n__cons(V1, V2)) → ISNAT(activate(V1))
ISNATILIST(V) → ACTIVATE(V)
ISNATILIST(n__cons(V1, V2)) → ACTIVATE(V2)
ISNATILIST(n__cons(V1, V2)) → ACTIVATE(V1)
ISNATILIST(V) → ISNATLIST(activate(V))
The remaining pairs can at least be oriented weakly.
ISNAT(n__length(V1)) → ISNATLIST(activate(V1))
ACTIVATE(n__s(X)) → ACTIVATE(X)
ACTIVATE(n__and(X1, X2)) → ACTIVATE(X1)
ISNATILIST(n__cons(V1, V2)) → AND(isNat(activate(V1)), n__isNatIList(activate(V2)))
ACTIVATE(n__cons(X1, X2)) → ACTIVATE(X1)
ACTIVATE(n__isNatList(X)) → ISNATLIST(X)
LENGTH(cons(N, L)) → U111(and(isNatList(activate(L)), n__isNat(N)), activate(L))
U111(tt, L) → ACTIVATE(L)
ISNATLIST(n__cons(V1, V2)) → ACTIVATE(V1)
LENGTH(cons(N, L)) → ACTIVATE(L)
ACTIVATE(n__and(X1, X2)) → AND(activate(X1), X2)
ACTIVATE(n__length(X)) → LENGTH(activate(X))
U111(tt, L) → LENGTH(activate(L))
ISNAT(n__s(V1)) → ISNAT(activate(V1))
AND(tt, X) → ACTIVATE(X)
ISNAT(n__s(V1)) → ACTIVATE(V1)
LENGTH(cons(N, L)) → ISNATLIST(activate(L))
ISNATLIST(n__cons(V1, V2)) → ISNAT(activate(V1))
ACTIVATE(n__isNat(X)) → ISNAT(X)
ISNATLIST(n__cons(V1, V2)) → AND(isNat(activate(V1)), n__isNatList(activate(V2)))
ACTIVATE(n__isNatIList(X)) → ISNATILIST(X)
ISNATLIST(n__cons(V1, V2)) → ACTIVATE(V2)
ISNAT(n__length(V1)) → ACTIVATE(V1)
ACTIVATE(n__length(X)) → ACTIVATE(X)
LENGTH(cons(N, L)) → AND(isNatList(activate(L)), n__isNat(N))
Used ordering: Polynomial interpretation [25]:
POL(0) = 0
POL(ACTIVATE(x1)) = x1
POL(AND(x1, x2)) = x2
POL(ISNAT(x1)) = x1
POL(ISNATILIST(x1)) = 1 + x1
POL(ISNATLIST(x1)) = x1
POL(LENGTH(x1)) = x1
POL(U11(x1, x2)) = x2
POL(U111(x1, x2)) = x2
POL(U21(x1)) = x1
POL(U31(x1, x2, x3, x4)) = 1 + x2 + x3 + x4
POL(activate(x1)) = x1
POL(and(x1, x2)) = x1 + x2
POL(cons(x1, x2)) = x1 + x2
POL(isNat(x1)) = x1
POL(isNatIList(x1)) = 1 + x1
POL(isNatList(x1)) = x1
POL(length(x1)) = x1
POL(n__0) = 0
POL(n__and(x1, x2)) = x1 + x2
POL(n__cons(x1, x2)) = x1 + x2
POL(n__isNat(x1)) = x1
POL(n__isNatIList(x1)) = 1 + x1
POL(n__isNatList(x1)) = x1
POL(n__length(x1)) = x1
POL(n__nil) = 0
POL(n__s(x1)) = x1
POL(n__take(x1, x2)) = 1 + x1 + x2
POL(n__zeros) = 0
POL(nil) = 0
POL(s(x1)) = x1
POL(take(x1, x2)) = 1 + x1 + x2
POL(tt) = 0
POL(zeros) = 0
The following usable rules [17] were oriented:
isNatIList(X) → n__isNatIList(X)
cons(X1, X2) → n__cons(X1, X2)
isNatList(X) → n__isNatList(X)
nil → n__nil
and(X1, X2) → n__and(X1, X2)
isNat(X) → n__isNat(X)
activate(n__take(X1, X2)) → take(activate(X1), activate(X2))
activate(n__zeros) → zeros
take(0, IL) → U21(isNatIList(IL))
length(cons(N, L)) → U11(and(isNatList(activate(L)), n__isNat(N)), activate(L))
zeros → n__zeros
take(s(M), cons(N, IL)) → U31(and(isNatIList(activate(IL)), n__and(n__isNat(M), n__isNat(N))), activate(IL), M, N)
0 → n__0
take(X1, X2) → n__take(X1, X2)
s(X) → n__s(X)
length(X) → n__length(X)
activate(X) → X
activate(n__0) → 0
activate(n__length(X)) → length(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
isNatList(n__cons(V1, V2)) → and(isNat(activate(V1)), n__isNatList(activate(V2)))
isNatIList(V) → isNatList(activate(V))
activate(n__isNat(X)) → isNat(X)
activate(n__and(X1, X2)) → and(activate(X1), X2)
isNat(n__s(V1)) → isNat(activate(V1))
and(tt, X) → activate(X)
isNatIList(n__cons(V1, V2)) → and(isNat(activate(V1)), n__isNatIList(activate(V2)))
isNatList(n__take(V1, V2)) → and(isNat(activate(V1)), n__isNatIList(activate(V2)))
activate(n__isNatIList(X)) → isNatIList(X)
isNat(n__length(V1)) → isNatList(activate(V1))
activate(n__isNatList(X)) → isNatList(X)
activate(n__nil) → nil
isNat(n__0) → tt
U31(tt, IL, M, N) → cons(activate(N), n__take(activate(M), activate(IL)))
U21(tt) → nil
U11(tt, L) → s(length(activate(L)))
zeros → cons(0, n__zeros)
length(nil) → 0
isNatList(n__nil) → tt
isNatIList(n__zeros) → tt
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
Q DP problem:
The TRS P consists of the following rules:
ISNAT(n__length(V1)) → ISNATLIST(activate(V1))
ACTIVATE(n__and(X1, X2)) → ACTIVATE(X1)
ACTIVATE(n__s(X)) → ACTIVATE(X)
ISNATILIST(n__cons(V1, V2)) → AND(isNat(activate(V1)), n__isNatIList(activate(V2)))
ACTIVATE(n__isNatList(X)) → ISNATLIST(X)
ACTIVATE(n__cons(X1, X2)) → ACTIVATE(X1)
LENGTH(cons(N, L)) → U111(and(isNatList(activate(L)), n__isNat(N)), activate(L))
U111(tt, L) → ACTIVATE(L)
ISNATLIST(n__cons(V1, V2)) → ACTIVATE(V1)
ACTIVATE(n__and(X1, X2)) → AND(activate(X1), X2)
LENGTH(cons(N, L)) → ACTIVATE(L)
ACTIVATE(n__length(X)) → LENGTH(activate(X))
U111(tt, L) → LENGTH(activate(L))
ISNAT(n__s(V1)) → ISNAT(activate(V1))
AND(tt, X) → ACTIVATE(X)
ISNAT(n__s(V1)) → ACTIVATE(V1)
LENGTH(cons(N, L)) → ISNATLIST(activate(L))
ISNATLIST(n__cons(V1, V2)) → ISNAT(activate(V1))
ACTIVATE(n__isNat(X)) → ISNAT(X)
ISNATLIST(n__cons(V1, V2)) → AND(isNat(activate(V1)), n__isNatList(activate(V2)))
ACTIVATE(n__isNatIList(X)) → ISNATILIST(X)
ISNATLIST(n__cons(V1, V2)) → ACTIVATE(V2)
ISNAT(n__length(V1)) → ACTIVATE(V1)
ACTIVATE(n__length(X)) → ACTIVATE(X)
LENGTH(cons(N, L)) → AND(isNatList(activate(L)), n__isNat(N))
The TRS R consists of the following rules:
zeros → cons(0, n__zeros)
U11(tt, L) → s(length(activate(L)))
U21(tt) → nil
U31(tt, IL, M, N) → cons(activate(N), n__take(activate(M), activate(IL)))
and(tt, X) → activate(X)
isNat(n__0) → tt
isNat(n__length(V1)) → isNatList(activate(V1))
isNat(n__s(V1)) → isNat(activate(V1))
isNatIList(V) → isNatList(activate(V))
isNatIList(n__zeros) → tt
isNatIList(n__cons(V1, V2)) → and(isNat(activate(V1)), n__isNatIList(activate(V2)))
isNatList(n__nil) → tt
isNatList(n__cons(V1, V2)) → and(isNat(activate(V1)), n__isNatList(activate(V2)))
isNatList(n__take(V1, V2)) → and(isNat(activate(V1)), n__isNatIList(activate(V2)))
length(nil) → 0
length(cons(N, L)) → U11(and(isNatList(activate(L)), n__isNat(N)), activate(L))
take(0, IL) → U21(isNatIList(IL))
take(s(M), cons(N, IL)) → U31(and(isNatIList(activate(IL)), n__and(n__isNat(M), n__isNat(N))), activate(IL), M, N)
zeros → n__zeros
take(X1, X2) → n__take(X1, X2)
0 → n__0
length(X) → n__length(X)
s(X) → n__s(X)
cons(X1, X2) → n__cons(X1, X2)
isNatIList(X) → n__isNatIList(X)
nil → n__nil
isNatList(X) → n__isNatList(X)
isNat(X) → n__isNat(X)
and(X1, X2) → n__and(X1, X2)
activate(n__zeros) → zeros
activate(n__take(X1, X2)) → take(activate(X1), activate(X2))
activate(n__0) → 0
activate(n__length(X)) → length(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(n__isNatIList(X)) → isNatIList(X)
activate(n__nil) → nil
activate(n__isNatList(X)) → isNatList(X)
activate(n__isNat(X)) → isNat(X)
activate(n__and(X1, X2)) → and(activate(X1), X2)
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].
The following pairs can be oriented strictly and are deleted.
ISNAT(n__length(V1)) → ISNATLIST(activate(V1))
ACTIVATE(n__length(X)) → LENGTH(activate(X))
ISNAT(n__length(V1)) → ACTIVATE(V1)
ACTIVATE(n__length(X)) → ACTIVATE(X)
The remaining pairs can at least be oriented weakly.
ACTIVATE(n__and(X1, X2)) → ACTIVATE(X1)
ACTIVATE(n__s(X)) → ACTIVATE(X)
ISNATILIST(n__cons(V1, V2)) → AND(isNat(activate(V1)), n__isNatIList(activate(V2)))
ACTIVATE(n__isNatList(X)) → ISNATLIST(X)
ACTIVATE(n__cons(X1, X2)) → ACTIVATE(X1)
LENGTH(cons(N, L)) → U111(and(isNatList(activate(L)), n__isNat(N)), activate(L))
U111(tt, L) → ACTIVATE(L)
ISNATLIST(n__cons(V1, V2)) → ACTIVATE(V1)
ACTIVATE(n__and(X1, X2)) → AND(activate(X1), X2)
LENGTH(cons(N, L)) → ACTIVATE(L)
U111(tt, L) → LENGTH(activate(L))
ISNAT(n__s(V1)) → ISNAT(activate(V1))
AND(tt, X) → ACTIVATE(X)
ISNAT(n__s(V1)) → ACTIVATE(V1)
LENGTH(cons(N, L)) → ISNATLIST(activate(L))
ISNATLIST(n__cons(V1, V2)) → ISNAT(activate(V1))
ACTIVATE(n__isNat(X)) → ISNAT(X)
ISNATLIST(n__cons(V1, V2)) → AND(isNat(activate(V1)), n__isNatList(activate(V2)))
ACTIVATE(n__isNatIList(X)) → ISNATILIST(X)
ISNATLIST(n__cons(V1, V2)) → ACTIVATE(V2)
LENGTH(cons(N, L)) → AND(isNatList(activate(L)), n__isNat(N))
Used ordering: Polynomial interpretation [25]:
POL(0) = 0
POL(ACTIVATE(x1)) = x1
POL(AND(x1, x2)) = x2
POL(ISNAT(x1)) = x1
POL(ISNATILIST(x1)) = x1
POL(ISNATLIST(x1)) = x1
POL(LENGTH(x1)) = x1
POL(U11(x1, x2)) = 1 + x2
POL(U111(x1, x2)) = x2
POL(U21(x1)) = 1 + x1
POL(U31(x1, x2, x3, x4)) = 1 + x2 + x3 + x4
POL(activate(x1)) = x1
POL(and(x1, x2)) = x1 + x2
POL(cons(x1, x2)) = x1 + x2
POL(isNat(x1)) = x1
POL(isNatIList(x1)) = x1
POL(isNatList(x1)) = x1
POL(length(x1)) = 1 + x1
POL(n__0) = 0
POL(n__and(x1, x2)) = x1 + x2
POL(n__cons(x1, x2)) = x1 + x2
POL(n__isNat(x1)) = x1
POL(n__isNatIList(x1)) = x1
POL(n__isNatList(x1)) = x1
POL(n__length(x1)) = 1 + x1
POL(n__nil) = 1
POL(n__s(x1)) = x1
POL(n__take(x1, x2)) = 1 + x1 + x2
POL(n__zeros) = 0
POL(nil) = 1
POL(s(x1)) = x1
POL(take(x1, x2)) = 1 + x1 + x2
POL(tt) = 0
POL(zeros) = 0
The following usable rules [17] were oriented:
isNatIList(X) → n__isNatIList(X)
cons(X1, X2) → n__cons(X1, X2)
isNatList(X) → n__isNatList(X)
nil → n__nil
and(X1, X2) → n__and(X1, X2)
isNat(X) → n__isNat(X)
activate(n__take(X1, X2)) → take(activate(X1), activate(X2))
activate(n__zeros) → zeros
take(0, IL) → U21(isNatIList(IL))
length(cons(N, L)) → U11(and(isNatList(activate(L)), n__isNat(N)), activate(L))
zeros → n__zeros
take(s(M), cons(N, IL)) → U31(and(isNatIList(activate(IL)), n__and(n__isNat(M), n__isNat(N))), activate(IL), M, N)
0 → n__0
take(X1, X2) → n__take(X1, X2)
s(X) → n__s(X)
length(X) → n__length(X)
activate(X) → X
activate(n__0) → 0
activate(n__length(X)) → length(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
isNatList(n__cons(V1, V2)) → and(isNat(activate(V1)), n__isNatList(activate(V2)))
isNatIList(V) → isNatList(activate(V))
activate(n__isNat(X)) → isNat(X)
activate(n__and(X1, X2)) → and(activate(X1), X2)
isNat(n__s(V1)) → isNat(activate(V1))
and(tt, X) → activate(X)
isNatIList(n__cons(V1, V2)) → and(isNat(activate(V1)), n__isNatIList(activate(V2)))
isNatList(n__take(V1, V2)) → and(isNat(activate(V1)), n__isNatIList(activate(V2)))
activate(n__isNatIList(X)) → isNatIList(X)
isNat(n__length(V1)) → isNatList(activate(V1))
activate(n__isNatList(X)) → isNatList(X)
activate(n__nil) → nil
isNat(n__0) → tt
U31(tt, IL, M, N) → cons(activate(N), n__take(activate(M), activate(IL)))
U21(tt) → nil
U11(tt, L) → s(length(activate(L)))
zeros → cons(0, n__zeros)
length(nil) → 0
isNatList(n__nil) → tt
isNatIList(n__zeros) → tt
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
Q DP problem:
The TRS P consists of the following rules:
ISNATLIST(n__cons(V1, V2)) → ACTIVATE(V1)
ACTIVATE(n__and(X1, X2)) → AND(activate(X1), X2)
LENGTH(cons(N, L)) → ACTIVATE(L)
U111(tt, L) → LENGTH(activate(L))
ISNAT(n__s(V1)) → ISNAT(activate(V1))
ISNAT(n__s(V1)) → ACTIVATE(V1)
AND(tt, X) → ACTIVATE(X)
LENGTH(cons(N, L)) → ISNATLIST(activate(L))
ACTIVATE(n__and(X1, X2)) → ACTIVATE(X1)
ACTIVATE(n__s(X)) → ACTIVATE(X)
ISNATLIST(n__cons(V1, V2)) → ISNAT(activate(V1))
ISNATILIST(n__cons(V1, V2)) → AND(isNat(activate(V1)), n__isNatIList(activate(V2)))
ACTIVATE(n__isNatList(X)) → ISNATLIST(X)
ACTIVATE(n__cons(X1, X2)) → ACTIVATE(X1)
ACTIVATE(n__isNat(X)) → ISNAT(X)
ISNATLIST(n__cons(V1, V2)) → AND(isNat(activate(V1)), n__isNatList(activate(V2)))
ACTIVATE(n__isNatIList(X)) → ISNATILIST(X)
LENGTH(cons(N, L)) → U111(and(isNatList(activate(L)), n__isNat(N)), activate(L))
ISNATLIST(n__cons(V1, V2)) → ACTIVATE(V2)
U111(tt, L) → ACTIVATE(L)
LENGTH(cons(N, L)) → AND(isNatList(activate(L)), n__isNat(N))
The TRS R consists of the following rules:
zeros → cons(0, n__zeros)
U11(tt, L) → s(length(activate(L)))
U21(tt) → nil
U31(tt, IL, M, N) → cons(activate(N), n__take(activate(M), activate(IL)))
and(tt, X) → activate(X)
isNat(n__0) → tt
isNat(n__length(V1)) → isNatList(activate(V1))
isNat(n__s(V1)) → isNat(activate(V1))
isNatIList(V) → isNatList(activate(V))
isNatIList(n__zeros) → tt
isNatIList(n__cons(V1, V2)) → and(isNat(activate(V1)), n__isNatIList(activate(V2)))
isNatList(n__nil) → tt
isNatList(n__cons(V1, V2)) → and(isNat(activate(V1)), n__isNatList(activate(V2)))
isNatList(n__take(V1, V2)) → and(isNat(activate(V1)), n__isNatIList(activate(V2)))
length(nil) → 0
length(cons(N, L)) → U11(and(isNatList(activate(L)), n__isNat(N)), activate(L))
take(0, IL) → U21(isNatIList(IL))
take(s(M), cons(N, IL)) → U31(and(isNatIList(activate(IL)), n__and(n__isNat(M), n__isNat(N))), activate(IL), M, N)
zeros → n__zeros
take(X1, X2) → n__take(X1, X2)
0 → n__0
length(X) → n__length(X)
s(X) → n__s(X)
cons(X1, X2) → n__cons(X1, X2)
isNatIList(X) → n__isNatIList(X)
nil → n__nil
isNatList(X) → n__isNatList(X)
isNat(X) → n__isNat(X)
and(X1, X2) → n__and(X1, X2)
activate(n__zeros) → zeros
activate(n__take(X1, X2)) → take(activate(X1), activate(X2))
activate(n__0) → 0
activate(n__length(X)) → length(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(n__isNatIList(X)) → isNatIList(X)
activate(n__nil) → nil
activate(n__isNatList(X)) → isNatList(X)
activate(n__isNat(X)) → isNat(X)
activate(n__and(X1, X2)) → and(activate(X1), X2)
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 2 SCCs with 4 less nodes.
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPOrderProof
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
ISNATLIST(n__cons(V1, V2)) → ACTIVATE(V1)
ACTIVATE(n__and(X1, X2)) → AND(activate(X1), X2)
ISNAT(n__s(V1)) → ISNAT(activate(V1))
AND(tt, X) → ACTIVATE(X)
ISNAT(n__s(V1)) → ACTIVATE(V1)
ACTIVATE(n__s(X)) → ACTIVATE(X)
ACTIVATE(n__and(X1, X2)) → ACTIVATE(X1)
ISNATILIST(n__cons(V1, V2)) → AND(isNat(activate(V1)), n__isNatIList(activate(V2)))
ISNATLIST(n__cons(V1, V2)) → ISNAT(activate(V1))
ACTIVATE(n__cons(X1, X2)) → ACTIVATE(X1)
ACTIVATE(n__isNatList(X)) → ISNATLIST(X)
ACTIVATE(n__isNat(X)) → ISNAT(X)
ISNATLIST(n__cons(V1, V2)) → AND(isNat(activate(V1)), n__isNatList(activate(V2)))
ACTIVATE(n__isNatIList(X)) → ISNATILIST(X)
ISNATLIST(n__cons(V1, V2)) → ACTIVATE(V2)
The TRS R consists of the following rules:
zeros → cons(0, n__zeros)
U11(tt, L) → s(length(activate(L)))
U21(tt) → nil
U31(tt, IL, M, N) → cons(activate(N), n__take(activate(M), activate(IL)))
and(tt, X) → activate(X)
isNat(n__0) → tt
isNat(n__length(V1)) → isNatList(activate(V1))
isNat(n__s(V1)) → isNat(activate(V1))
isNatIList(V) → isNatList(activate(V))
isNatIList(n__zeros) → tt
isNatIList(n__cons(V1, V2)) → and(isNat(activate(V1)), n__isNatIList(activate(V2)))
isNatList(n__nil) → tt
isNatList(n__cons(V1, V2)) → and(isNat(activate(V1)), n__isNatList(activate(V2)))
isNatList(n__take(V1, V2)) → and(isNat(activate(V1)), n__isNatIList(activate(V2)))
length(nil) → 0
length(cons(N, L)) → U11(and(isNatList(activate(L)), n__isNat(N)), activate(L))
take(0, IL) → U21(isNatIList(IL))
take(s(M), cons(N, IL)) → U31(and(isNatIList(activate(IL)), n__and(n__isNat(M), n__isNat(N))), activate(IL), M, N)
zeros → n__zeros
take(X1, X2) → n__take(X1, X2)
0 → n__0
length(X) → n__length(X)
s(X) → n__s(X)
cons(X1, X2) → n__cons(X1, X2)
isNatIList(X) → n__isNatIList(X)
nil → n__nil
isNatList(X) → n__isNatList(X)
isNat(X) → n__isNat(X)
and(X1, X2) → n__and(X1, X2)
activate(n__zeros) → zeros
activate(n__take(X1, X2)) → take(activate(X1), activate(X2))
activate(n__0) → 0
activate(n__length(X)) → length(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(n__isNatIList(X)) → isNatIList(X)
activate(n__nil) → nil
activate(n__isNatList(X)) → isNatList(X)
activate(n__isNat(X)) → isNat(X)
activate(n__and(X1, X2)) → and(activate(X1), X2)
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].
The following pairs can be oriented strictly and are deleted.
ISNATLIST(n__cons(V1, V2)) → ACTIVATE(V1)
ISNATLIST(n__cons(V1, V2)) → ISNAT(activate(V1))
ISNATLIST(n__cons(V1, V2)) → ACTIVATE(V2)
The remaining pairs can at least be oriented weakly.
ACTIVATE(n__and(X1, X2)) → AND(activate(X1), X2)
ISNAT(n__s(V1)) → ISNAT(activate(V1))
AND(tt, X) → ACTIVATE(X)
ISNAT(n__s(V1)) → ACTIVATE(V1)
ACTIVATE(n__s(X)) → ACTIVATE(X)
ACTIVATE(n__and(X1, X2)) → ACTIVATE(X1)
ISNATILIST(n__cons(V1, V2)) → AND(isNat(activate(V1)), n__isNatIList(activate(V2)))
ACTIVATE(n__cons(X1, X2)) → ACTIVATE(X1)
ACTIVATE(n__isNatList(X)) → ISNATLIST(X)
ACTIVATE(n__isNat(X)) → ISNAT(X)
ISNATLIST(n__cons(V1, V2)) → AND(isNat(activate(V1)), n__isNatList(activate(V2)))
ACTIVATE(n__isNatIList(X)) → ISNATILIST(X)
Used ordering: Polynomial interpretation [25]:
POL(0) = 0
POL(ACTIVATE(x1)) = x1
POL(AND(x1, x2)) = x2
POL(ISNAT(x1)) = x1
POL(ISNATILIST(x1)) = 1 + x1
POL(ISNATLIST(x1)) = 1 + x1
POL(U11(x1, x2)) = 1 + x2
POL(U21(x1)) = 0
POL(U31(x1, x2, x3, x4)) = x2 + x3 + x4
POL(activate(x1)) = x1
POL(and(x1, x2)) = x1 + x2
POL(cons(x1, x2)) = x1 + x2
POL(isNat(x1)) = x1
POL(isNatIList(x1)) = 1 + x1
POL(isNatList(x1)) = 1 + x1
POL(length(x1)) = 1 + x1
POL(n__0) = 0
POL(n__and(x1, x2)) = x1 + x2
POL(n__cons(x1, x2)) = x1 + x2
POL(n__isNat(x1)) = x1
POL(n__isNatIList(x1)) = 1 + x1
POL(n__isNatList(x1)) = 1 + x1
POL(n__length(x1)) = 1 + x1
POL(n__nil) = 0
POL(n__s(x1)) = x1
POL(n__take(x1, x2)) = x1 + x2
POL(n__zeros) = 0
POL(nil) = 0
POL(s(x1)) = x1
POL(take(x1, x2)) = x1 + x2
POL(tt) = 0
POL(zeros) = 0
The following usable rules [17] were oriented:
isNatIList(X) → n__isNatIList(X)
cons(X1, X2) → n__cons(X1, X2)
isNatList(X) → n__isNatList(X)
nil → n__nil
and(X1, X2) → n__and(X1, X2)
isNat(X) → n__isNat(X)
activate(n__take(X1, X2)) → take(activate(X1), activate(X2))
activate(n__zeros) → zeros
take(0, IL) → U21(isNatIList(IL))
length(cons(N, L)) → U11(and(isNatList(activate(L)), n__isNat(N)), activate(L))
zeros → n__zeros
take(s(M), cons(N, IL)) → U31(and(isNatIList(activate(IL)), n__and(n__isNat(M), n__isNat(N))), activate(IL), M, N)
0 → n__0
take(X1, X2) → n__take(X1, X2)
s(X) → n__s(X)
length(X) → n__length(X)
activate(X) → X
activate(n__0) → 0
activate(n__length(X)) → length(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
isNatList(n__cons(V1, V2)) → and(isNat(activate(V1)), n__isNatList(activate(V2)))
isNatIList(V) → isNatList(activate(V))
activate(n__isNat(X)) → isNat(X)
activate(n__and(X1, X2)) → and(activate(X1), X2)
isNat(n__s(V1)) → isNat(activate(V1))
and(tt, X) → activate(X)
isNatIList(n__cons(V1, V2)) → and(isNat(activate(V1)), n__isNatIList(activate(V2)))
isNatList(n__take(V1, V2)) → and(isNat(activate(V1)), n__isNatIList(activate(V2)))
activate(n__isNatIList(X)) → isNatIList(X)
isNat(n__length(V1)) → isNatList(activate(V1))
activate(n__isNatList(X)) → isNatList(X)
activate(n__nil) → nil
isNat(n__0) → tt
U31(tt, IL, M, N) → cons(activate(N), n__take(activate(M), activate(IL)))
U21(tt) → nil
U11(tt, L) → s(length(activate(L)))
zeros → cons(0, n__zeros)
length(nil) → 0
isNatList(n__nil) → tt
isNatIList(n__zeros) → tt
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
ACTIVATE(n__isNatList(X)) → ISNATLIST(X)
ACTIVATE(n__cons(X1, X2)) → ACTIVATE(X1)
ACTIVATE(n__and(X1, X2)) → AND(activate(X1), X2)
ACTIVATE(n__isNat(X)) → ISNAT(X)
ISNATLIST(n__cons(V1, V2)) → AND(isNat(activate(V1)), n__isNatList(activate(V2)))
ACTIVATE(n__isNatIList(X)) → ISNATILIST(X)
ISNAT(n__s(V1)) → ISNAT(activate(V1))
ISNAT(n__s(V1)) → ACTIVATE(V1)
AND(tt, X) → ACTIVATE(X)
ACTIVATE(n__and(X1, X2)) → ACTIVATE(X1)
ACTIVATE(n__s(X)) → ACTIVATE(X)
ISNATILIST(n__cons(V1, V2)) → AND(isNat(activate(V1)), n__isNatIList(activate(V2)))
The TRS R consists of the following rules:
zeros → cons(0, n__zeros)
U11(tt, L) → s(length(activate(L)))
U21(tt) → nil
U31(tt, IL, M, N) → cons(activate(N), n__take(activate(M), activate(IL)))
and(tt, X) → activate(X)
isNat(n__0) → tt
isNat(n__length(V1)) → isNatList(activate(V1))
isNat(n__s(V1)) → isNat(activate(V1))
isNatIList(V) → isNatList(activate(V))
isNatIList(n__zeros) → tt
isNatIList(n__cons(V1, V2)) → and(isNat(activate(V1)), n__isNatIList(activate(V2)))
isNatList(n__nil) → tt
isNatList(n__cons(V1, V2)) → and(isNat(activate(V1)), n__isNatList(activate(V2)))
isNatList(n__take(V1, V2)) → and(isNat(activate(V1)), n__isNatIList(activate(V2)))
length(nil) → 0
length(cons(N, L)) → U11(and(isNatList(activate(L)), n__isNat(N)), activate(L))
take(0, IL) → U21(isNatIList(IL))
take(s(M), cons(N, IL)) → U31(and(isNatIList(activate(IL)), n__and(n__isNat(M), n__isNat(N))), activate(IL), M, N)
zeros → n__zeros
take(X1, X2) → n__take(X1, X2)
0 → n__0
length(X) → n__length(X)
s(X) → n__s(X)
cons(X1, X2) → n__cons(X1, X2)
isNatIList(X) → n__isNatIList(X)
nil → n__nil
isNatList(X) → n__isNatList(X)
isNat(X) → n__isNat(X)
and(X1, X2) → n__and(X1, X2)
activate(n__zeros) → zeros
activate(n__take(X1, X2)) → take(activate(X1), activate(X2))
activate(n__0) → 0
activate(n__length(X)) → length(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(n__isNatIList(X)) → isNatIList(X)
activate(n__nil) → nil
activate(n__isNatList(X)) → isNatList(X)
activate(n__isNat(X)) → isNat(X)
activate(n__and(X1, X2)) → and(activate(X1), X2)
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].
The following pairs can be oriented strictly and are deleted.
ACTIVATE(n__cons(X1, X2)) → ACTIVATE(X1)
The remaining pairs can at least be oriented weakly.
ACTIVATE(n__isNatList(X)) → ISNATLIST(X)
ACTIVATE(n__and(X1, X2)) → AND(activate(X1), X2)
ACTIVATE(n__isNat(X)) → ISNAT(X)
ISNATLIST(n__cons(V1, V2)) → AND(isNat(activate(V1)), n__isNatList(activate(V2)))
ACTIVATE(n__isNatIList(X)) → ISNATILIST(X)
ISNAT(n__s(V1)) → ISNAT(activate(V1))
ISNAT(n__s(V1)) → ACTIVATE(V1)
AND(tt, X) → ACTIVATE(X)
ACTIVATE(n__and(X1, X2)) → ACTIVATE(X1)
ACTIVATE(n__s(X)) → ACTIVATE(X)
ISNATILIST(n__cons(V1, V2)) → AND(isNat(activate(V1)), n__isNatIList(activate(V2)))
Used ordering: Matrix interpretation [3]:
Non-tuple symbols:
M( U31(x1, ..., x4) ) = | | + | | · | x1 | + | | · | x2 | + | | · | x3 | + | | · | x4 |
M( and(x1, x2) ) = | | + | | · | x1 | + | | · | x2 |
M( take(x1, x2) ) = | | + | | · | x1 | + | | · | x2 |
M( isNatList(x1) ) = | | + | | · | x1 |
M( isNatIList(x1) ) = | | + | | · | x1 |
M( n__isNatIList(x1) ) = | | + | | · | x1 |
M( n__length(x1) ) = | | + | | · | x1 |
M( n__isNatList(x1) ) = | | + | | · | x1 |
M( n__cons(x1, x2) ) = | | + | | · | x1 | + | | · | x2 |
M( U11(x1, x2) ) = | | + | | · | x1 | + | | · | x2 |
M( n__and(x1, x2) ) = | | + | | · | x1 | + | | · | x2 |
M( cons(x1, x2) ) = | | + | | · | x1 | + | | · | x2 |
M( n__take(x1, x2) ) = | | + | | · | x1 | + | | · | x2 |
Tuple symbols:
M( ISNATLIST(x1) ) = | 0 | + | | · | x1 |
M( AND(x1, x2) ) = | 0 | + | | · | x1 | + | | · | x2 |
M( ISNATILIST(x1) ) = | 0 | + | | · | x1 |
M( ACTIVATE(x1) ) = | 0 | + | | · | x1 |
Matrix type:
We used a basic matrix type which is not further parametrizeable.
As matrix orders are CE-compatible, we used usable rules w.r.t. argument filtering in the order.
The following usable rules [17] were oriented:
isNatIList(X) → n__isNatIList(X)
cons(X1, X2) → n__cons(X1, X2)
isNatList(X) → n__isNatList(X)
nil → n__nil
and(X1, X2) → n__and(X1, X2)
isNat(X) → n__isNat(X)
activate(n__take(X1, X2)) → take(activate(X1), activate(X2))
activate(n__zeros) → zeros
take(0, IL) → U21(isNatIList(IL))
length(cons(N, L)) → U11(and(isNatList(activate(L)), n__isNat(N)), activate(L))
zeros → n__zeros
take(s(M), cons(N, IL)) → U31(and(isNatIList(activate(IL)), n__and(n__isNat(M), n__isNat(N))), activate(IL), M, N)
0 → n__0
take(X1, X2) → n__take(X1, X2)
s(X) → n__s(X)
length(X) → n__length(X)
activate(X) → X
activate(n__0) → 0
activate(n__length(X)) → length(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
isNatList(n__cons(V1, V2)) → and(isNat(activate(V1)), n__isNatList(activate(V2)))
isNatIList(V) → isNatList(activate(V))
activate(n__isNat(X)) → isNat(X)
activate(n__and(X1, X2)) → and(activate(X1), X2)
isNat(n__s(V1)) → isNat(activate(V1))
and(tt, X) → activate(X)
isNatIList(n__cons(V1, V2)) → and(isNat(activate(V1)), n__isNatIList(activate(V2)))
isNatList(n__take(V1, V2)) → and(isNat(activate(V1)), n__isNatIList(activate(V2)))
activate(n__isNatIList(X)) → isNatIList(X)
isNat(n__length(V1)) → isNatList(activate(V1))
activate(n__isNatList(X)) → isNatList(X)
activate(n__nil) → nil
isNat(n__0) → tt
U31(tt, IL, M, N) → cons(activate(N), n__take(activate(M), activate(IL)))
U21(tt) → nil
U11(tt, L) → s(length(activate(L)))
zeros → cons(0, n__zeros)
length(nil) → 0
isNatList(n__nil) → tt
isNatIList(n__zeros) → tt
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ Narrowing
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
ACTIVATE(n__isNatList(X)) → ISNATLIST(X)
ACTIVATE(n__and(X1, X2)) → AND(activate(X1), X2)
ACTIVATE(n__isNat(X)) → ISNAT(X)
ISNATLIST(n__cons(V1, V2)) → AND(isNat(activate(V1)), n__isNatList(activate(V2)))
ISNAT(n__s(V1)) → ISNAT(activate(V1))
ACTIVATE(n__isNatIList(X)) → ISNATILIST(X)
AND(tt, X) → ACTIVATE(X)
ISNAT(n__s(V1)) → ACTIVATE(V1)
ACTIVATE(n__s(X)) → ACTIVATE(X)
ACTIVATE(n__and(X1, X2)) → ACTIVATE(X1)
ISNATILIST(n__cons(V1, V2)) → AND(isNat(activate(V1)), n__isNatIList(activate(V2)))
The TRS R consists of the following rules:
zeros → cons(0, n__zeros)
U11(tt, L) → s(length(activate(L)))
U21(tt) → nil
U31(tt, IL, M, N) → cons(activate(N), n__take(activate(M), activate(IL)))
and(tt, X) → activate(X)
isNat(n__0) → tt
isNat(n__length(V1)) → isNatList(activate(V1))
isNat(n__s(V1)) → isNat(activate(V1))
isNatIList(V) → isNatList(activate(V))
isNatIList(n__zeros) → tt
isNatIList(n__cons(V1, V2)) → and(isNat(activate(V1)), n__isNatIList(activate(V2)))
isNatList(n__nil) → tt
isNatList(n__cons(V1, V2)) → and(isNat(activate(V1)), n__isNatList(activate(V2)))
isNatList(n__take(V1, V2)) → and(isNat(activate(V1)), n__isNatIList(activate(V2)))
length(nil) → 0
length(cons(N, L)) → U11(and(isNatList(activate(L)), n__isNat(N)), activate(L))
take(0, IL) → U21(isNatIList(IL))
take(s(M), cons(N, IL)) → U31(and(isNatIList(activate(IL)), n__and(n__isNat(M), n__isNat(N))), activate(IL), M, N)
zeros → n__zeros
take(X1, X2) → n__take(X1, X2)
0 → n__0
length(X) → n__length(X)
s(X) → n__s(X)
cons(X1, X2) → n__cons(X1, X2)
isNatIList(X) → n__isNatIList(X)
nil → n__nil
isNatList(X) → n__isNatList(X)
isNat(X) → n__isNat(X)
and(X1, X2) → n__and(X1, X2)
activate(n__zeros) → zeros
activate(n__take(X1, X2)) → take(activate(X1), activate(X2))
activate(n__0) → 0
activate(n__length(X)) → length(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(n__isNatIList(X)) → isNatIList(X)
activate(n__nil) → nil
activate(n__isNatList(X)) → isNatList(X)
activate(n__isNat(X)) → isNat(X)
activate(n__and(X1, X2)) → and(activate(X1), X2)
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By narrowing [15] the rule ACTIVATE(n__and(X1, X2)) → AND(activate(X1), X2) at position [0] we obtained the following new rules:
ACTIVATE(n__and(n__cons(x0, x1), y1)) → AND(cons(activate(x0), x1), y1)
ACTIVATE(n__and(n__isNatList(x0), y1)) → AND(isNatList(x0), y1)
ACTIVATE(n__and(n__take(x0, x1), y1)) → AND(take(activate(x0), activate(x1)), y1)
ACTIVATE(n__and(n__isNat(x0), y1)) → AND(isNat(x0), y1)
ACTIVATE(n__and(n__s(x0), y1)) → AND(s(activate(x0)), y1)
ACTIVATE(n__and(n__zeros, y1)) → AND(zeros, y1)
ACTIVATE(n__and(n__isNatIList(x0), y1)) → AND(isNatIList(x0), y1)
ACTIVATE(n__and(n__length(x0), y1)) → AND(length(activate(x0)), y1)
ACTIVATE(n__and(n__nil, y1)) → AND(nil, y1)
ACTIVATE(n__and(n__and(x0, x1), y1)) → AND(and(activate(x0), x1), y1)
ACTIVATE(n__and(x0, y1)) → AND(x0, y1)
ACTIVATE(n__and(n__0, y1)) → AND(0, y1)
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
ACTIVATE(n__and(n__cons(x0, x1), y1)) → AND(cons(activate(x0), x1), y1)
ACTIVATE(n__and(n__take(x0, x1), y1)) → AND(take(activate(x0), activate(x1)), y1)
ACTIVATE(n__and(n__isNatList(x0), y1)) → AND(isNatList(x0), y1)
ACTIVATE(n__and(n__s(x0), y1)) → AND(s(activate(x0)), y1)
ISNAT(n__s(V1)) → ISNAT(activate(V1))
ACTIVATE(n__and(n__zeros, y1)) → AND(zeros, y1)
ACTIVATE(n__and(n__length(x0), y1)) → AND(length(activate(x0)), y1)
AND(tt, X) → ACTIVATE(X)
ISNAT(n__s(V1)) → ACTIVATE(V1)
ACTIVATE(n__and(n__and(x0, x1), y1)) → AND(and(activate(x0), x1), y1)
ACTIVATE(n__and(x0, y1)) → AND(x0, y1)
ACTIVATE(n__s(X)) → ACTIVATE(X)
ACTIVATE(n__and(X1, X2)) → ACTIVATE(X1)
ISNATILIST(n__cons(V1, V2)) → AND(isNat(activate(V1)), n__isNatIList(activate(V2)))
ACTIVATE(n__isNatList(X)) → ISNATLIST(X)
ACTIVATE(n__and(n__isNat(x0), y1)) → AND(isNat(x0), y1)
ACTIVATE(n__isNat(X)) → ISNAT(X)
ISNATLIST(n__cons(V1, V2)) → AND(isNat(activate(V1)), n__isNatList(activate(V2)))
ACTIVATE(n__isNatIList(X)) → ISNATILIST(X)
ACTIVATE(n__and(n__isNatIList(x0), y1)) → AND(isNatIList(x0), y1)
ACTIVATE(n__and(n__nil, y1)) → AND(nil, y1)
ACTIVATE(n__and(n__0, y1)) → AND(0, y1)
The TRS R consists of the following rules:
zeros → cons(0, n__zeros)
U11(tt, L) → s(length(activate(L)))
U21(tt) → nil
U31(tt, IL, M, N) → cons(activate(N), n__take(activate(M), activate(IL)))
and(tt, X) → activate(X)
isNat(n__0) → tt
isNat(n__length(V1)) → isNatList(activate(V1))
isNat(n__s(V1)) → isNat(activate(V1))
isNatIList(V) → isNatList(activate(V))
isNatIList(n__zeros) → tt
isNatIList(n__cons(V1, V2)) → and(isNat(activate(V1)), n__isNatIList(activate(V2)))
isNatList(n__nil) → tt
isNatList(n__cons(V1, V2)) → and(isNat(activate(V1)), n__isNatList(activate(V2)))
isNatList(n__take(V1, V2)) → and(isNat(activate(V1)), n__isNatIList(activate(V2)))
length(nil) → 0
length(cons(N, L)) → U11(and(isNatList(activate(L)), n__isNat(N)), activate(L))
take(0, IL) → U21(isNatIList(IL))
take(s(M), cons(N, IL)) → U31(and(isNatIList(activate(IL)), n__and(n__isNat(M), n__isNat(N))), activate(IL), M, N)
zeros → n__zeros
take(X1, X2) → n__take(X1, X2)
0 → n__0
length(X) → n__length(X)
s(X) → n__s(X)
cons(X1, X2) → n__cons(X1, X2)
isNatIList(X) → n__isNatIList(X)
nil → n__nil
isNatList(X) → n__isNatList(X)
isNat(X) → n__isNat(X)
and(X1, X2) → n__and(X1, X2)
activate(n__zeros) → zeros
activate(n__take(X1, X2)) → take(activate(X1), activate(X2))
activate(n__0) → 0
activate(n__length(X)) → length(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(n__isNatIList(X)) → isNatIList(X)
activate(n__nil) → nil
activate(n__isNatList(X)) → isNatList(X)
activate(n__isNat(X)) → isNat(X)
activate(n__and(X1, X2)) → and(activate(X1), X2)
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By narrowing [15] the rule ISNATLIST(n__cons(V1, V2)) → AND(isNat(activate(V1)), n__isNatList(activate(V2))) at position [0] we obtained the following new rules:
ISNATLIST(n__cons(n__take(x0, x1), y1)) → AND(isNat(take(activate(x0), activate(x1))), n__isNatList(activate(y1)))
ISNATLIST(n__cons(n__length(x0), y1)) → AND(isNat(length(activate(x0))), n__isNatList(activate(y1)))
ISNATLIST(n__cons(n__and(x0, x1), y1)) → AND(isNat(and(activate(x0), x1)), n__isNatList(activate(y1)))
ISNATLIST(n__cons(x0, y1)) → AND(isNat(x0), n__isNatList(activate(y1)))
ISNATLIST(n__cons(n__0, y1)) → AND(isNat(0), n__isNatList(activate(y1)))
ISNATLIST(n__cons(y0, y1)) → AND(n__isNat(activate(y0)), n__isNatList(activate(y1)))
ISNATLIST(n__cons(n__cons(x0, x1), y1)) → AND(isNat(cons(activate(x0), x1)), n__isNatList(activate(y1)))
ISNATLIST(n__cons(n__isNatIList(x0), y1)) → AND(isNat(isNatIList(x0)), n__isNatList(activate(y1)))
ISNATLIST(n__cons(n__isNatList(x0), y1)) → AND(isNat(isNatList(x0)), n__isNatList(activate(y1)))
ISNATLIST(n__cons(n__nil, y1)) → AND(isNat(nil), n__isNatList(activate(y1)))
ISNATLIST(n__cons(n__zeros, y1)) → AND(isNat(zeros), n__isNatList(activate(y1)))
ISNATLIST(n__cons(n__s(x0), y1)) → AND(isNat(s(activate(x0))), n__isNatList(activate(y1)))
ISNATLIST(n__cons(n__isNat(x0), y1)) → AND(isNat(isNat(x0)), n__isNatList(activate(y1)))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
ISNATLIST(n__cons(n__take(x0, x1), y1)) → AND(isNat(take(activate(x0), activate(x1))), n__isNatList(activate(y1)))
ISNATLIST(n__cons(n__length(x0), y1)) → AND(isNat(length(activate(x0))), n__isNatList(activate(y1)))
ACTIVATE(n__and(n__isNatList(x0), y1)) → AND(isNatList(x0), y1)
ISNATLIST(n__cons(n__and(x0, x1), y1)) → AND(isNat(and(activate(x0), x1)), n__isNatList(activate(y1)))
ISNATLIST(n__cons(x0, y1)) → AND(isNat(x0), n__isNatList(activate(y1)))
ISNATLIST(n__cons(y0, y1)) → AND(n__isNat(activate(y0)), n__isNatList(activate(y1)))
ISNATLIST(n__cons(n__0, y1)) → AND(isNat(0), n__isNatList(activate(y1)))
ACTIVATE(n__and(n__zeros, y1)) → AND(zeros, y1)
ACTIVATE(n__and(n__length(x0), y1)) → AND(length(activate(x0)), y1)
ACTIVATE(n__and(n__and(x0, x1), y1)) → AND(and(activate(x0), x1), y1)
ACTIVATE(n__s(X)) → ACTIVATE(X)
ACTIVATE(n__and(X1, X2)) → ACTIVATE(X1)
ISNATILIST(n__cons(V1, V2)) → AND(isNat(activate(V1)), n__isNatIList(activate(V2)))
ACTIVATE(n__isNatList(X)) → ISNATLIST(X)
ISNATLIST(n__cons(n__isNatList(x0), y1)) → AND(isNat(isNatList(x0)), n__isNatList(activate(y1)))
ISNATLIST(n__cons(n__isNatIList(x0), y1)) → AND(isNat(isNatIList(x0)), n__isNatList(activate(y1)))
ACTIVATE(n__and(n__isNat(x0), y1)) → AND(isNat(x0), y1)
ISNATLIST(n__cons(n__s(x0), y1)) → AND(isNat(s(activate(x0))), n__isNatList(activate(y1)))
ACTIVATE(n__and(n__nil, y1)) → AND(nil, y1)
ISNATLIST(n__cons(n__isNat(x0), y1)) → AND(isNat(isNat(x0)), n__isNatList(activate(y1)))
ACTIVATE(n__and(n__0, y1)) → AND(0, y1)
ACTIVATE(n__and(n__cons(x0, x1), y1)) → AND(cons(activate(x0), x1), y1)
ACTIVATE(n__and(n__take(x0, x1), y1)) → AND(take(activate(x0), activate(x1)), y1)
ACTIVATE(n__and(n__s(x0), y1)) → AND(s(activate(x0)), y1)
ISNAT(n__s(V1)) → ISNAT(activate(V1))
AND(tt, X) → ACTIVATE(X)
ISNAT(n__s(V1)) → ACTIVATE(V1)
ISNATLIST(n__cons(n__cons(x0, x1), y1)) → AND(isNat(cons(activate(x0), x1)), n__isNatList(activate(y1)))
ACTIVATE(n__and(x0, y1)) → AND(x0, y1)
ACTIVATE(n__isNat(X)) → ISNAT(X)
ISNATLIST(n__cons(n__nil, y1)) → AND(isNat(nil), n__isNatList(activate(y1)))
ACTIVATE(n__isNatIList(X)) → ISNATILIST(X)
ACTIVATE(n__and(n__isNatIList(x0), y1)) → AND(isNatIList(x0), y1)
ISNATLIST(n__cons(n__zeros, y1)) → AND(isNat(zeros), n__isNatList(activate(y1)))
The TRS R consists of the following rules:
zeros → cons(0, n__zeros)
U11(tt, L) → s(length(activate(L)))
U21(tt) → nil
U31(tt, IL, M, N) → cons(activate(N), n__take(activate(M), activate(IL)))
and(tt, X) → activate(X)
isNat(n__0) → tt
isNat(n__length(V1)) → isNatList(activate(V1))
isNat(n__s(V1)) → isNat(activate(V1))
isNatIList(V) → isNatList(activate(V))
isNatIList(n__zeros) → tt
isNatIList(n__cons(V1, V2)) → and(isNat(activate(V1)), n__isNatIList(activate(V2)))
isNatList(n__nil) → tt
isNatList(n__cons(V1, V2)) → and(isNat(activate(V1)), n__isNatList(activate(V2)))
isNatList(n__take(V1, V2)) → and(isNat(activate(V1)), n__isNatIList(activate(V2)))
length(nil) → 0
length(cons(N, L)) → U11(and(isNatList(activate(L)), n__isNat(N)), activate(L))
take(0, IL) → U21(isNatIList(IL))
take(s(M), cons(N, IL)) → U31(and(isNatIList(activate(IL)), n__and(n__isNat(M), n__isNat(N))), activate(IL), M, N)
zeros → n__zeros
take(X1, X2) → n__take(X1, X2)
0 → n__0
length(X) → n__length(X)
s(X) → n__s(X)
cons(X1, X2) → n__cons(X1, X2)
isNatIList(X) → n__isNatIList(X)
nil → n__nil
isNatList(X) → n__isNatList(X)
isNat(X) → n__isNat(X)
and(X1, X2) → n__and(X1, X2)
activate(n__zeros) → zeros
activate(n__take(X1, X2)) → take(activate(X1), activate(X2))
activate(n__0) → 0
activate(n__length(X)) → length(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(n__isNatIList(X)) → isNatIList(X)
activate(n__nil) → nil
activate(n__isNatList(X)) → isNatList(X)
activate(n__isNat(X)) → isNat(X)
activate(n__and(X1, X2)) → and(activate(X1), X2)
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 1 SCC with 1 less node.
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
ISNATLIST(n__cons(n__take(x0, x1), y1)) → AND(isNat(take(activate(x0), activate(x1))), n__isNatList(activate(y1)))
ISNATLIST(n__cons(n__length(x0), y1)) → AND(isNat(length(activate(x0))), n__isNatList(activate(y1)))
ACTIVATE(n__and(n__isNatList(x0), y1)) → AND(isNatList(x0), y1)
ISNATLIST(n__cons(n__and(x0, x1), y1)) → AND(isNat(and(activate(x0), x1)), n__isNatList(activate(y1)))
ISNATLIST(n__cons(x0, y1)) → AND(isNat(x0), n__isNatList(activate(y1)))
ISNATLIST(n__cons(n__0, y1)) → AND(isNat(0), n__isNatList(activate(y1)))
ACTIVATE(n__and(n__zeros, y1)) → AND(zeros, y1)
ACTIVATE(n__and(n__length(x0), y1)) → AND(length(activate(x0)), y1)
ACTIVATE(n__and(n__and(x0, x1), y1)) → AND(and(activate(x0), x1), y1)
ACTIVATE(n__s(X)) → ACTIVATE(X)
ACTIVATE(n__and(X1, X2)) → ACTIVATE(X1)
ISNATILIST(n__cons(V1, V2)) → AND(isNat(activate(V1)), n__isNatIList(activate(V2)))
ACTIVATE(n__isNatList(X)) → ISNATLIST(X)
ISNATLIST(n__cons(n__isNatList(x0), y1)) → AND(isNat(isNatList(x0)), n__isNatList(activate(y1)))
ISNATLIST(n__cons(n__isNatIList(x0), y1)) → AND(isNat(isNatIList(x0)), n__isNatList(activate(y1)))
ACTIVATE(n__and(n__isNat(x0), y1)) → AND(isNat(x0), y1)
ACTIVATE(n__and(n__nil, y1)) → AND(nil, y1)
ISNATLIST(n__cons(n__s(x0), y1)) → AND(isNat(s(activate(x0))), n__isNatList(activate(y1)))
ACTIVATE(n__and(n__0, y1)) → AND(0, y1)
ISNATLIST(n__cons(n__isNat(x0), y1)) → AND(isNat(isNat(x0)), n__isNatList(activate(y1)))
ACTIVATE(n__and(n__cons(x0, x1), y1)) → AND(cons(activate(x0), x1), y1)
ACTIVATE(n__and(n__take(x0, x1), y1)) → AND(take(activate(x0), activate(x1)), y1)
ACTIVATE(n__and(n__s(x0), y1)) → AND(s(activate(x0)), y1)
ISNAT(n__s(V1)) → ISNAT(activate(V1))
AND(tt, X) → ACTIVATE(X)
ISNAT(n__s(V1)) → ACTIVATE(V1)
ACTIVATE(n__and(x0, y1)) → AND(x0, y1)
ISNATLIST(n__cons(n__cons(x0, x1), y1)) → AND(isNat(cons(activate(x0), x1)), n__isNatList(activate(y1)))
ACTIVATE(n__isNat(X)) → ISNAT(X)
ACTIVATE(n__isNatIList(X)) → ISNATILIST(X)
ISNATLIST(n__cons(n__nil, y1)) → AND(isNat(nil), n__isNatList(activate(y1)))
ACTIVATE(n__and(n__isNatIList(x0), y1)) → AND(isNatIList(x0), y1)
ISNATLIST(n__cons(n__zeros, y1)) → AND(isNat(zeros), n__isNatList(activate(y1)))
The TRS R consists of the following rules:
zeros → cons(0, n__zeros)
U11(tt, L) → s(length(activate(L)))
U21(tt) → nil
U31(tt, IL, M, N) → cons(activate(N), n__take(activate(M), activate(IL)))
and(tt, X) → activate(X)
isNat(n__0) → tt
isNat(n__length(V1)) → isNatList(activate(V1))
isNat(n__s(V1)) → isNat(activate(V1))
isNatIList(V) → isNatList(activate(V))
isNatIList(n__zeros) → tt
isNatIList(n__cons(V1, V2)) → and(isNat(activate(V1)), n__isNatIList(activate(V2)))
isNatList(n__nil) → tt
isNatList(n__cons(V1, V2)) → and(isNat(activate(V1)), n__isNatList(activate(V2)))
isNatList(n__take(V1, V2)) → and(isNat(activate(V1)), n__isNatIList(activate(V2)))
length(nil) → 0
length(cons(N, L)) → U11(and(isNatList(activate(L)), n__isNat(N)), activate(L))
take(0, IL) → U21(isNatIList(IL))
take(s(M), cons(N, IL)) → U31(and(isNatIList(activate(IL)), n__and(n__isNat(M), n__isNat(N))), activate(IL), M, N)
zeros → n__zeros
take(X1, X2) → n__take(X1, X2)
0 → n__0
length(X) → n__length(X)
s(X) → n__s(X)
cons(X1, X2) → n__cons(X1, X2)
isNatIList(X) → n__isNatIList(X)
nil → n__nil
isNatList(X) → n__isNatList(X)
isNat(X) → n__isNat(X)
and(X1, X2) → n__and(X1, X2)
activate(n__zeros) → zeros
activate(n__take(X1, X2)) → take(activate(X1), activate(X2))
activate(n__0) → 0
activate(n__length(X)) → length(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(n__isNatIList(X)) → isNatIList(X)
activate(n__nil) → nil
activate(n__isNatList(X)) → isNatList(X)
activate(n__isNat(X)) → isNat(X)
activate(n__and(X1, X2)) → and(activate(X1), X2)
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By narrowing [15] the rule ISNATILIST(n__cons(V1, V2)) → AND(isNat(activate(V1)), n__isNatIList(activate(V2))) at position [0] we obtained the following new rules:
ISNATILIST(n__cons(n__take(x0, x1), y1)) → AND(isNat(take(activate(x0), activate(x1))), n__isNatIList(activate(y1)))
ISNATILIST(n__cons(n__isNatList(x0), y1)) → AND(isNat(isNatList(x0)), n__isNatIList(activate(y1)))
ISNATILIST(n__cons(n__length(x0), y1)) → AND(isNat(length(activate(x0))), n__isNatIList(activate(y1)))
ISNATILIST(n__cons(n__cons(x0, x1), y1)) → AND(isNat(cons(activate(x0), x1)), n__isNatIList(activate(y1)))
ISNATILIST(n__cons(n__nil, y1)) → AND(isNat(nil), n__isNatIList(activate(y1)))
ISNATILIST(n__cons(n__s(x0), y1)) → AND(isNat(s(activate(x0))), n__isNatIList(activate(y1)))
ISNATILIST(n__cons(n__isNatIList(x0), y1)) → AND(isNat(isNatIList(x0)), n__isNatIList(activate(y1)))
ISNATILIST(n__cons(n__zeros, y1)) → AND(isNat(zeros), n__isNatIList(activate(y1)))
ISNATILIST(n__cons(y0, y1)) → AND(n__isNat(activate(y0)), n__isNatIList(activate(y1)))
ISNATILIST(n__cons(x0, y1)) → AND(isNat(x0), n__isNatIList(activate(y1)))
ISNATILIST(n__cons(n__isNat(x0), y1)) → AND(isNat(isNat(x0)), n__isNatIList(activate(y1)))
ISNATILIST(n__cons(n__0, y1)) → AND(isNat(0), n__isNatIList(activate(y1)))
ISNATILIST(n__cons(n__and(x0, x1), y1)) → AND(isNat(and(activate(x0), x1)), n__isNatIList(activate(y1)))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
ISNATLIST(n__cons(n__take(x0, x1), y1)) → AND(isNat(take(activate(x0), activate(x1))), n__isNatList(activate(y1)))
ISNATILIST(n__cons(n__take(x0, x1), y1)) → AND(isNat(take(activate(x0), activate(x1))), n__isNatIList(activate(y1)))
ISNATLIST(n__cons(n__length(x0), y1)) → AND(isNat(length(activate(x0))), n__isNatList(activate(y1)))
ACTIVATE(n__and(n__isNatList(x0), y1)) → AND(isNatList(x0), y1)
ISNATLIST(n__cons(n__and(x0, x1), y1)) → AND(isNat(and(activate(x0), x1)), n__isNatList(activate(y1)))
ISNATILIST(n__cons(n__isNatList(x0), y1)) → AND(isNat(isNatList(x0)), n__isNatIList(activate(y1)))
ISNATLIST(n__cons(x0, y1)) → AND(isNat(x0), n__isNatList(activate(y1)))
ISNATILIST(n__cons(n__cons(x0, x1), y1)) → AND(isNat(cons(activate(x0), x1)), n__isNatIList(activate(y1)))
ISNATLIST(n__cons(n__0, y1)) → AND(isNat(0), n__isNatList(activate(y1)))
ACTIVATE(n__and(n__zeros, y1)) → AND(zeros, y1)
ACTIVATE(n__and(n__length(x0), y1)) → AND(length(activate(x0)), y1)
ACTIVATE(n__and(n__and(x0, x1), y1)) → AND(and(activate(x0), x1), y1)
ACTIVATE(n__and(X1, X2)) → ACTIVATE(X1)
ACTIVATE(n__s(X)) → ACTIVATE(X)
ISNATILIST(n__cons(y0, y1)) → AND(n__isNat(activate(y0)), n__isNatIList(activate(y1)))
ACTIVATE(n__isNatList(X)) → ISNATLIST(X)
ACTIVATE(n__and(n__isNat(x0), y1)) → AND(isNat(x0), y1)
ISNATLIST(n__cons(n__isNatIList(x0), y1)) → AND(isNat(isNatIList(x0)), n__isNatList(activate(y1)))
ISNATLIST(n__cons(n__isNatList(x0), y1)) → AND(isNat(isNatList(x0)), n__isNatList(activate(y1)))
ISNATILIST(n__cons(n__and(x0, x1), y1)) → AND(isNat(and(activate(x0), x1)), n__isNatIList(activate(y1)))
ISNATLIST(n__cons(n__s(x0), y1)) → AND(isNat(s(activate(x0))), n__isNatList(activate(y1)))
ACTIVATE(n__and(n__nil, y1)) → AND(nil, y1)
ISNATLIST(n__cons(n__isNat(x0), y1)) → AND(isNat(isNat(x0)), n__isNatList(activate(y1)))
ACTIVATE(n__and(n__0, y1)) → AND(0, y1)
ACTIVATE(n__and(n__cons(x0, x1), y1)) → AND(cons(activate(x0), x1), y1)
ACTIVATE(n__and(n__take(x0, x1), y1)) → AND(take(activate(x0), activate(x1)), y1)
ISNATILIST(n__cons(n__length(x0), y1)) → AND(isNat(length(activate(x0))), n__isNatIList(activate(y1)))
ISNAT(n__s(V1)) → ISNAT(activate(V1))
ACTIVATE(n__and(n__s(x0), y1)) → AND(s(activate(x0)), y1)
ISNATILIST(n__cons(n__nil, y1)) → AND(isNat(nil), n__isNatIList(activate(y1)))
ISNAT(n__s(V1)) → ACTIVATE(V1)
AND(tt, X) → ACTIVATE(X)
ISNATILIST(n__cons(n__s(x0), y1)) → AND(isNat(s(activate(x0))), n__isNatIList(activate(y1)))
ISNATILIST(n__cons(n__isNatIList(x0), y1)) → AND(isNat(isNatIList(x0)), n__isNatIList(activate(y1)))
ISNATLIST(n__cons(n__cons(x0, x1), y1)) → AND(isNat(cons(activate(x0), x1)), n__isNatList(activate(y1)))
ACTIVATE(n__and(x0, y1)) → AND(x0, y1)
ISNATILIST(n__cons(n__zeros, y1)) → AND(isNat(zeros), n__isNatIList(activate(y1)))
ISNATILIST(n__cons(x0, y1)) → AND(isNat(x0), n__isNatIList(activate(y1)))
ISNATILIST(n__cons(n__isNat(x0), y1)) → AND(isNat(isNat(x0)), n__isNatIList(activate(y1)))
ACTIVATE(n__isNat(X)) → ISNAT(X)
ISNATILIST(n__cons(n__0, y1)) → AND(isNat(0), n__isNatIList(activate(y1)))
ISNATLIST(n__cons(n__nil, y1)) → AND(isNat(nil), n__isNatList(activate(y1)))
ACTIVATE(n__isNatIList(X)) → ISNATILIST(X)
ACTIVATE(n__and(n__isNatIList(x0), y1)) → AND(isNatIList(x0), y1)
ISNATLIST(n__cons(n__zeros, y1)) → AND(isNat(zeros), n__isNatList(activate(y1)))
The TRS R consists of the following rules:
zeros → cons(0, n__zeros)
U11(tt, L) → s(length(activate(L)))
U21(tt) → nil
U31(tt, IL, M, N) → cons(activate(N), n__take(activate(M), activate(IL)))
and(tt, X) → activate(X)
isNat(n__0) → tt
isNat(n__length(V1)) → isNatList(activate(V1))
isNat(n__s(V1)) → isNat(activate(V1))
isNatIList(V) → isNatList(activate(V))
isNatIList(n__zeros) → tt
isNatIList(n__cons(V1, V2)) → and(isNat(activate(V1)), n__isNatIList(activate(V2)))
isNatList(n__nil) → tt
isNatList(n__cons(V1, V2)) → and(isNat(activate(V1)), n__isNatList(activate(V2)))
isNatList(n__take(V1, V2)) → and(isNat(activate(V1)), n__isNatIList(activate(V2)))
length(nil) → 0
length(cons(N, L)) → U11(and(isNatList(activate(L)), n__isNat(N)), activate(L))
take(0, IL) → U21(isNatIList(IL))
take(s(M), cons(N, IL)) → U31(and(isNatIList(activate(IL)), n__and(n__isNat(M), n__isNat(N))), activate(IL), M, N)
zeros → n__zeros
take(X1, X2) → n__take(X1, X2)
0 → n__0
length(X) → n__length(X)
s(X) → n__s(X)
cons(X1, X2) → n__cons(X1, X2)
isNatIList(X) → n__isNatIList(X)
nil → n__nil
isNatList(X) → n__isNatList(X)
isNat(X) → n__isNat(X)
and(X1, X2) → n__and(X1, X2)
activate(n__zeros) → zeros
activate(n__take(X1, X2)) → take(activate(X1), activate(X2))
activate(n__0) → 0
activate(n__length(X)) → length(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(n__isNatIList(X)) → isNatIList(X)
activate(n__nil) → nil
activate(n__isNatList(X)) → isNatList(X)
activate(n__isNat(X)) → isNat(X)
activate(n__and(X1, X2)) → and(activate(X1), X2)
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 1 SCC with 1 less node.
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
ISNATLIST(n__cons(n__take(x0, x1), y1)) → AND(isNat(take(activate(x0), activate(x1))), n__isNatList(activate(y1)))
ISNATILIST(n__cons(n__take(x0, x1), y1)) → AND(isNat(take(activate(x0), activate(x1))), n__isNatIList(activate(y1)))
ISNATLIST(n__cons(n__length(x0), y1)) → AND(isNat(length(activate(x0))), n__isNatList(activate(y1)))
ACTIVATE(n__and(n__isNatList(x0), y1)) → AND(isNatList(x0), y1)
ISNATLIST(n__cons(n__and(x0, x1), y1)) → AND(isNat(and(activate(x0), x1)), n__isNatList(activate(y1)))
ISNATILIST(n__cons(n__isNatList(x0), y1)) → AND(isNat(isNatList(x0)), n__isNatIList(activate(y1)))
ISNATLIST(n__cons(x0, y1)) → AND(isNat(x0), n__isNatList(activate(y1)))
ISNATILIST(n__cons(n__cons(x0, x1), y1)) → AND(isNat(cons(activate(x0), x1)), n__isNatIList(activate(y1)))
ISNATLIST(n__cons(n__0, y1)) → AND(isNat(0), n__isNatList(activate(y1)))
ACTIVATE(n__and(n__zeros, y1)) → AND(zeros, y1)
ACTIVATE(n__and(n__length(x0), y1)) → AND(length(activate(x0)), y1)
ACTIVATE(n__and(n__and(x0, x1), y1)) → AND(and(activate(x0), x1), y1)
ACTIVATE(n__and(X1, X2)) → ACTIVATE(X1)
ACTIVATE(n__s(X)) → ACTIVATE(X)
ACTIVATE(n__isNatList(X)) → ISNATLIST(X)
ACTIVATE(n__and(n__isNat(x0), y1)) → AND(isNat(x0), y1)
ISNATLIST(n__cons(n__isNatIList(x0), y1)) → AND(isNat(isNatIList(x0)), n__isNatList(activate(y1)))
ISNATLIST(n__cons(n__isNatList(x0), y1)) → AND(isNat(isNatList(x0)), n__isNatList(activate(y1)))
ACTIVATE(n__and(n__nil, y1)) → AND(nil, y1)
ISNATLIST(n__cons(n__s(x0), y1)) → AND(isNat(s(activate(x0))), n__isNatList(activate(y1)))
ISNATILIST(n__cons(n__and(x0, x1), y1)) → AND(isNat(and(activate(x0), x1)), n__isNatIList(activate(y1)))
ACTIVATE(n__and(n__0, y1)) → AND(0, y1)
ISNATLIST(n__cons(n__isNat(x0), y1)) → AND(isNat(isNat(x0)), n__isNatList(activate(y1)))
ACTIVATE(n__and(n__cons(x0, x1), y1)) → AND(cons(activate(x0), x1), y1)
ACTIVATE(n__and(n__take(x0, x1), y1)) → AND(take(activate(x0), activate(x1)), y1)
ISNATILIST(n__cons(n__length(x0), y1)) → AND(isNat(length(activate(x0))), n__isNatIList(activate(y1)))
ACTIVATE(n__and(n__s(x0), y1)) → AND(s(activate(x0)), y1)
ISNAT(n__s(V1)) → ISNAT(activate(V1))
ISNAT(n__s(V1)) → ACTIVATE(V1)
ISNATILIST(n__cons(n__nil, y1)) → AND(isNat(nil), n__isNatIList(activate(y1)))
AND(tt, X) → ACTIVATE(X)
ISNATILIST(n__cons(n__s(x0), y1)) → AND(isNat(s(activate(x0))), n__isNatIList(activate(y1)))
ISNATILIST(n__cons(n__isNatIList(x0), y1)) → AND(isNat(isNatIList(x0)), n__isNatIList(activate(y1)))
ACTIVATE(n__and(x0, y1)) → AND(x0, y1)
ISNATLIST(n__cons(n__cons(x0, x1), y1)) → AND(isNat(cons(activate(x0), x1)), n__isNatList(activate(y1)))
ISNATILIST(n__cons(n__zeros, y1)) → AND(isNat(zeros), n__isNatIList(activate(y1)))
ISNATILIST(n__cons(x0, y1)) → AND(isNat(x0), n__isNatIList(activate(y1)))
ISNATILIST(n__cons(n__isNat(x0), y1)) → AND(isNat(isNat(x0)), n__isNatIList(activate(y1)))
ACTIVATE(n__isNat(X)) → ISNAT(X)
ACTIVATE(n__isNatIList(X)) → ISNATILIST(X)
ISNATILIST(n__cons(n__0, y1)) → AND(isNat(0), n__isNatIList(activate(y1)))
ISNATLIST(n__cons(n__nil, y1)) → AND(isNat(nil), n__isNatList(activate(y1)))
ACTIVATE(n__and(n__isNatIList(x0), y1)) → AND(isNatIList(x0), y1)
ISNATLIST(n__cons(n__zeros, y1)) → AND(isNat(zeros), n__isNatList(activate(y1)))
The TRS R consists of the following rules:
zeros → cons(0, n__zeros)
U11(tt, L) → s(length(activate(L)))
U21(tt) → nil
U31(tt, IL, M, N) → cons(activate(N), n__take(activate(M), activate(IL)))
and(tt, X) → activate(X)
isNat(n__0) → tt
isNat(n__length(V1)) → isNatList(activate(V1))
isNat(n__s(V1)) → isNat(activate(V1))
isNatIList(V) → isNatList(activate(V))
isNatIList(n__zeros) → tt
isNatIList(n__cons(V1, V2)) → and(isNat(activate(V1)), n__isNatIList(activate(V2)))
isNatList(n__nil) → tt
isNatList(n__cons(V1, V2)) → and(isNat(activate(V1)), n__isNatList(activate(V2)))
isNatList(n__take(V1, V2)) → and(isNat(activate(V1)), n__isNatIList(activate(V2)))
length(nil) → 0
length(cons(N, L)) → U11(and(isNatList(activate(L)), n__isNat(N)), activate(L))
take(0, IL) → U21(isNatIList(IL))
take(s(M), cons(N, IL)) → U31(and(isNatIList(activate(IL)), n__and(n__isNat(M), n__isNat(N))), activate(IL), M, N)
zeros → n__zeros
take(X1, X2) → n__take(X1, X2)
0 → n__0
length(X) → n__length(X)
s(X) → n__s(X)
cons(X1, X2) → n__cons(X1, X2)
isNatIList(X) → n__isNatIList(X)
nil → n__nil
isNatList(X) → n__isNatList(X)
isNat(X) → n__isNat(X)
and(X1, X2) → n__and(X1, X2)
activate(n__zeros) → zeros
activate(n__take(X1, X2)) → take(activate(X1), activate(X2))
activate(n__0) → 0
activate(n__length(X)) → length(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(n__isNatIList(X)) → isNatIList(X)
activate(n__nil) → nil
activate(n__isNatList(X)) → isNatList(X)
activate(n__isNat(X)) → isNat(X)
activate(n__and(X1, X2)) → and(activate(X1), X2)
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By narrowing [15] the rule ISNAT(n__s(V1)) → ISNAT(activate(V1)) at position [0] we obtained the following new rules:
ISNAT(n__s(n__s(x0))) → ISNAT(s(activate(x0)))
ISNAT(n__s(n__isNatIList(x0))) → ISNAT(isNatIList(x0))
ISNAT(n__s(n__and(x0, x1))) → ISNAT(and(activate(x0), x1))
ISNAT(n__s(n__isNat(x0))) → ISNAT(isNat(x0))
ISNAT(n__s(n__take(x0, x1))) → ISNAT(take(activate(x0), activate(x1)))
ISNAT(n__s(n__0)) → ISNAT(0)
ISNAT(n__s(n__cons(x0, x1))) → ISNAT(cons(activate(x0), x1))
ISNAT(n__s(n__length(x0))) → ISNAT(length(activate(x0)))
ISNAT(n__s(x0)) → ISNAT(x0)
ISNAT(n__s(n__nil)) → ISNAT(nil)
ISNAT(n__s(n__isNatList(x0))) → ISNAT(isNatList(x0))
ISNAT(n__s(n__zeros)) → ISNAT(zeros)
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
ISNATLIST(n__cons(n__take(x0, x1), y1)) → AND(isNat(take(activate(x0), activate(x1))), n__isNatList(activate(y1)))
ISNAT(n__s(n__s(x0))) → ISNAT(s(activate(x0)))
ACTIVATE(n__and(n__isNatList(x0), y1)) → AND(isNatList(x0), y1)
ISNATLIST(n__cons(n__and(x0, x1), y1)) → AND(isNat(and(activate(x0), x1)), n__isNatList(activate(y1)))
ISNATLIST(n__cons(x0, y1)) → AND(isNat(x0), n__isNatList(activate(y1)))
ISNATILIST(n__cons(n__cons(x0, x1), y1)) → AND(isNat(cons(activate(x0), x1)), n__isNatIList(activate(y1)))
ISNATLIST(n__cons(n__0, y1)) → AND(isNat(0), n__isNatList(activate(y1)))
ACTIVATE(n__and(n__zeros, y1)) → AND(zeros, y1)
ACTIVATE(n__s(X)) → ACTIVATE(X)
ISNATLIST(n__cons(n__isNatList(x0), y1)) → AND(isNat(isNatList(x0)), n__isNatList(activate(y1)))
ISNATLIST(n__cons(n__s(x0), y1)) → AND(isNat(s(activate(x0))), n__isNatList(activate(y1)))
ACTIVATE(n__and(n__take(x0, x1), y1)) → AND(take(activate(x0), activate(x1)), y1)
ISNAT(n__s(n__0)) → ISNAT(0)
ISNAT(n__s(n__isNat(x0))) → ISNAT(isNat(x0))
ISNATILIST(n__cons(n__length(x0), y1)) → AND(isNat(length(activate(x0))), n__isNatIList(activate(y1)))
ACTIVATE(n__and(n__s(x0), y1)) → AND(s(activate(x0)), y1)
ISNAT(n__s(V1)) → ACTIVATE(V1)
ISNATILIST(n__cons(n__nil, y1)) → AND(isNat(nil), n__isNatIList(activate(y1)))
AND(tt, X) → ACTIVATE(X)
ISNATILIST(n__cons(n__s(x0), y1)) → AND(isNat(s(activate(x0))), n__isNatIList(activate(y1)))
ISNAT(n__s(n__zeros)) → ISNAT(zeros)
ISNATILIST(n__cons(n__isNatIList(x0), y1)) → AND(isNat(isNatIList(x0)), n__isNatIList(activate(y1)))
ACTIVATE(n__and(x0, y1)) → AND(x0, y1)
ISNATILIST(n__cons(n__zeros, y1)) → AND(isNat(zeros), n__isNatIList(activate(y1)))
ISNATILIST(n__cons(x0, y1)) → AND(isNat(x0), n__isNatIList(activate(y1)))
ISNATILIST(n__cons(n__isNat(x0), y1)) → AND(isNat(isNat(x0)), n__isNatIList(activate(y1)))
ISNAT(n__s(n__and(x0, x1))) → ISNAT(and(activate(x0), x1))
ISNAT(n__s(n__take(x0, x1))) → ISNAT(take(activate(x0), activate(x1)))
ISNAT(n__s(n__length(x0))) → ISNAT(length(activate(x0)))
ACTIVATE(n__isNatIList(X)) → ISNATILIST(X)
ISNATILIST(n__cons(n__take(x0, x1), y1)) → AND(isNat(take(activate(x0), activate(x1))), n__isNatIList(activate(y1)))
ISNATLIST(n__cons(n__length(x0), y1)) → AND(isNat(length(activate(x0))), n__isNatList(activate(y1)))
ISNATILIST(n__cons(n__isNatList(x0), y1)) → AND(isNat(isNatList(x0)), n__isNatIList(activate(y1)))
ACTIVATE(n__and(n__length(x0), y1)) → AND(length(activate(x0)), y1)
ISNAT(n__s(n__nil)) → ISNAT(nil)
ACTIVATE(n__and(n__and(x0, x1), y1)) → AND(and(activate(x0), x1), y1)
ACTIVATE(n__and(X1, X2)) → ACTIVATE(X1)
ACTIVATE(n__isNatList(X)) → ISNATLIST(X)
ACTIVATE(n__and(n__isNat(x0), y1)) → AND(isNat(x0), y1)
ISNATLIST(n__cons(n__isNatIList(x0), y1)) → AND(isNat(isNatIList(x0)), n__isNatList(activate(y1)))
ACTIVATE(n__and(n__nil, y1)) → AND(nil, y1)
ISNATILIST(n__cons(n__and(x0, x1), y1)) → AND(isNat(and(activate(x0), x1)), n__isNatIList(activate(y1)))
ACTIVATE(n__and(n__0, y1)) → AND(0, y1)
ISNATLIST(n__cons(n__isNat(x0), y1)) → AND(isNat(isNat(x0)), n__isNatList(activate(y1)))
ACTIVATE(n__and(n__cons(x0, x1), y1)) → AND(cons(activate(x0), x1), y1)
ISNAT(n__s(n__isNatIList(x0))) → ISNAT(isNatIList(x0))
ISNAT(n__s(n__cons(x0, x1))) → ISNAT(cons(activate(x0), x1))
ISNAT(n__s(n__isNatList(x0))) → ISNAT(isNatList(x0))
ISNATLIST(n__cons(n__cons(x0, x1), y1)) → AND(isNat(cons(activate(x0), x1)), n__isNatList(activate(y1)))
ACTIVATE(n__isNat(X)) → ISNAT(X)
ISNATILIST(n__cons(n__0, y1)) → AND(isNat(0), n__isNatIList(activate(y1)))
ISNATLIST(n__cons(n__nil, y1)) → AND(isNat(nil), n__isNatList(activate(y1)))
ISNAT(n__s(x0)) → ISNAT(x0)
ACTIVATE(n__and(n__isNatIList(x0), y1)) → AND(isNatIList(x0), y1)
ISNATLIST(n__cons(n__zeros, y1)) → AND(isNat(zeros), n__isNatList(activate(y1)))
The TRS R consists of the following rules:
zeros → cons(0, n__zeros)
U11(tt, L) → s(length(activate(L)))
U21(tt) → nil
U31(tt, IL, M, N) → cons(activate(N), n__take(activate(M), activate(IL)))
and(tt, X) → activate(X)
isNat(n__0) → tt
isNat(n__length(V1)) → isNatList(activate(V1))
isNat(n__s(V1)) → isNat(activate(V1))
isNatIList(V) → isNatList(activate(V))
isNatIList(n__zeros) → tt
isNatIList(n__cons(V1, V2)) → and(isNat(activate(V1)), n__isNatIList(activate(V2)))
isNatList(n__nil) → tt
isNatList(n__cons(V1, V2)) → and(isNat(activate(V1)), n__isNatList(activate(V2)))
isNatList(n__take(V1, V2)) → and(isNat(activate(V1)), n__isNatIList(activate(V2)))
length(nil) → 0
length(cons(N, L)) → U11(and(isNatList(activate(L)), n__isNat(N)), activate(L))
take(0, IL) → U21(isNatIList(IL))
take(s(M), cons(N, IL)) → U31(and(isNatIList(activate(IL)), n__and(n__isNat(M), n__isNat(N))), activate(IL), M, N)
zeros → n__zeros
take(X1, X2) → n__take(X1, X2)
0 → n__0
length(X) → n__length(X)
s(X) → n__s(X)
cons(X1, X2) → n__cons(X1, X2)
isNatIList(X) → n__isNatIList(X)
nil → n__nil
isNatList(X) → n__isNatList(X)
isNat(X) → n__isNat(X)
and(X1, X2) → n__and(X1, X2)
activate(n__zeros) → zeros
activate(n__take(X1, X2)) → take(activate(X1), activate(X2))
activate(n__0) → 0
activate(n__length(X)) → length(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(n__isNatIList(X)) → isNatIList(X)
activate(n__nil) → nil
activate(n__isNatList(X)) → isNatList(X)
activate(n__isNat(X)) → isNat(X)
activate(n__and(X1, X2)) → and(activate(X1), X2)
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By narrowing [15] the rule ACTIVATE(n__and(n__zeros, y1)) → AND(zeros, y1) at position [0] we obtained the following new rules:
ACTIVATE(n__and(n__zeros, y0)) → AND(n__zeros, y0)
ACTIVATE(n__and(n__zeros, y0)) → AND(cons(0, n__zeros), y0)
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
ISNAT(n__s(n__s(x0))) → ISNAT(s(activate(x0)))
ISNATLIST(n__cons(n__take(x0, x1), y1)) → AND(isNat(take(activate(x0), activate(x1))), n__isNatList(activate(y1)))
ACTIVATE(n__and(n__isNatList(x0), y1)) → AND(isNatList(x0), y1)
ISNATLIST(n__cons(n__and(x0, x1), y1)) → AND(isNat(and(activate(x0), x1)), n__isNatList(activate(y1)))
ISNATLIST(n__cons(x0, y1)) → AND(isNat(x0), n__isNatList(activate(y1)))
ISNATLIST(n__cons(n__0, y1)) → AND(isNat(0), n__isNatList(activate(y1)))
ISNATILIST(n__cons(n__cons(x0, x1), y1)) → AND(isNat(cons(activate(x0), x1)), n__isNatIList(activate(y1)))
ACTIVATE(n__and(n__zeros, y0)) → AND(n__zeros, y0)
ACTIVATE(n__s(X)) → ACTIVATE(X)
ISNATLIST(n__cons(n__isNatList(x0), y1)) → AND(isNat(isNatList(x0)), n__isNatList(activate(y1)))
ISNATLIST(n__cons(n__s(x0), y1)) → AND(isNat(s(activate(x0))), n__isNatList(activate(y1)))
ACTIVATE(n__and(n__take(x0, x1), y1)) → AND(take(activate(x0), activate(x1)), y1)
ISNAT(n__s(n__isNat(x0))) → ISNAT(isNat(x0))
ISNAT(n__s(n__0)) → ISNAT(0)
ISNATILIST(n__cons(n__length(x0), y1)) → AND(isNat(length(activate(x0))), n__isNatIList(activate(y1)))
ACTIVATE(n__and(n__s(x0), y1)) → AND(s(activate(x0)), y1)
AND(tt, X) → ACTIVATE(X)
ISNATILIST(n__cons(n__nil, y1)) → AND(isNat(nil), n__isNatIList(activate(y1)))
ISNAT(n__s(V1)) → ACTIVATE(V1)
ISNATILIST(n__cons(n__s(x0), y1)) → AND(isNat(s(activate(x0))), n__isNatIList(activate(y1)))
ISNATILIST(n__cons(n__isNatIList(x0), y1)) → AND(isNat(isNatIList(x0)), n__isNatIList(activate(y1)))
ISNAT(n__s(n__zeros)) → ISNAT(zeros)
ACTIVATE(n__and(x0, y1)) → AND(x0, y1)
ISNATILIST(n__cons(n__zeros, y1)) → AND(isNat(zeros), n__isNatIList(activate(y1)))
ISNATILIST(n__cons(x0, y1)) → AND(isNat(x0), n__isNatIList(activate(y1)))
ISNAT(n__s(n__take(x0, x1))) → ISNAT(take(activate(x0), activate(x1)))
ISNAT(n__s(n__and(x0, x1))) → ISNAT(and(activate(x0), x1))
ISNATILIST(n__cons(n__isNat(x0), y1)) → AND(isNat(isNat(x0)), n__isNatIList(activate(y1)))
ACTIVATE(n__isNatIList(X)) → ISNATILIST(X)
ISNAT(n__s(n__length(x0))) → ISNAT(length(activate(x0)))
ISNATLIST(n__cons(n__length(x0), y1)) → AND(isNat(length(activate(x0))), n__isNatList(activate(y1)))
ISNATILIST(n__cons(n__take(x0, x1), y1)) → AND(isNat(take(activate(x0), activate(x1))), n__isNatIList(activate(y1)))
ISNATILIST(n__cons(n__isNatList(x0), y1)) → AND(isNat(isNatList(x0)), n__isNatIList(activate(y1)))
ACTIVATE(n__and(n__length(x0), y1)) → AND(length(activate(x0)), y1)
ACTIVATE(n__and(n__and(x0, x1), y1)) → AND(and(activate(x0), x1), y1)
ISNAT(n__s(n__nil)) → ISNAT(nil)
ACTIVATE(n__and(X1, X2)) → ACTIVATE(X1)
ACTIVATE(n__isNatList(X)) → ISNATLIST(X)
ISNATLIST(n__cons(n__isNatIList(x0), y1)) → AND(isNat(isNatIList(x0)), n__isNatList(activate(y1)))
ACTIVATE(n__and(n__isNat(x0), y1)) → AND(isNat(x0), y1)
ISNATILIST(n__cons(n__and(x0, x1), y1)) → AND(isNat(and(activate(x0), x1)), n__isNatIList(activate(y1)))
ACTIVATE(n__and(n__nil, y1)) → AND(nil, y1)
ACTIVATE(n__and(n__zeros, y0)) → AND(cons(0, n__zeros), y0)
ISNATLIST(n__cons(n__isNat(x0), y1)) → AND(isNat(isNat(x0)), n__isNatList(activate(y1)))
ACTIVATE(n__and(n__0, y1)) → AND(0, y1)
ACTIVATE(n__and(n__cons(x0, x1), y1)) → AND(cons(activate(x0), x1), y1)
ISNAT(n__s(n__isNatIList(x0))) → ISNAT(isNatIList(x0))
ISNAT(n__s(n__cons(x0, x1))) → ISNAT(cons(activate(x0), x1))
ISNAT(n__s(n__isNatList(x0))) → ISNAT(isNatList(x0))
ISNATLIST(n__cons(n__cons(x0, x1), y1)) → AND(isNat(cons(activate(x0), x1)), n__isNatList(activate(y1)))
ACTIVATE(n__isNat(X)) → ISNAT(X)
ISNATLIST(n__cons(n__nil, y1)) → AND(isNat(nil), n__isNatList(activate(y1)))
ISNATILIST(n__cons(n__0, y1)) → AND(isNat(0), n__isNatIList(activate(y1)))
ACTIVATE(n__and(n__isNatIList(x0), y1)) → AND(isNatIList(x0), y1)
ISNAT(n__s(x0)) → ISNAT(x0)
ISNATLIST(n__cons(n__zeros, y1)) → AND(isNat(zeros), n__isNatList(activate(y1)))
The TRS R consists of the following rules:
zeros → cons(0, n__zeros)
U11(tt, L) → s(length(activate(L)))
U21(tt) → nil
U31(tt, IL, M, N) → cons(activate(N), n__take(activate(M), activate(IL)))
and(tt, X) → activate(X)
isNat(n__0) → tt
isNat(n__length(V1)) → isNatList(activate(V1))
isNat(n__s(V1)) → isNat(activate(V1))
isNatIList(V) → isNatList(activate(V))
isNatIList(n__zeros) → tt
isNatIList(n__cons(V1, V2)) → and(isNat(activate(V1)), n__isNatIList(activate(V2)))
isNatList(n__nil) → tt
isNatList(n__cons(V1, V2)) → and(isNat(activate(V1)), n__isNatList(activate(V2)))
isNatList(n__take(V1, V2)) → and(isNat(activate(V1)), n__isNatIList(activate(V2)))
length(nil) → 0
length(cons(N, L)) → U11(and(isNatList(activate(L)), n__isNat(N)), activate(L))
take(0, IL) → U21(isNatIList(IL))
take(s(M), cons(N, IL)) → U31(and(isNatIList(activate(IL)), n__and(n__isNat(M), n__isNat(N))), activate(IL), M, N)
zeros → n__zeros
take(X1, X2) → n__take(X1, X2)
0 → n__0
length(X) → n__length(X)
s(X) → n__s(X)
cons(X1, X2) → n__cons(X1, X2)
isNatIList(X) → n__isNatIList(X)
nil → n__nil
isNatList(X) → n__isNatList(X)
isNat(X) → n__isNat(X)
and(X1, X2) → n__and(X1, X2)
activate(n__zeros) → zeros
activate(n__take(X1, X2)) → take(activate(X1), activate(X2))
activate(n__0) → 0
activate(n__length(X)) → length(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(n__isNatIList(X)) → isNatIList(X)
activate(n__nil) → nil
activate(n__isNatList(X)) → isNatList(X)
activate(n__isNat(X)) → isNat(X)
activate(n__and(X1, X2)) → and(activate(X1), X2)
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 1 SCC with 1 less node.
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
ISNATLIST(n__cons(n__take(x0, x1), y1)) → AND(isNat(take(activate(x0), activate(x1))), n__isNatList(activate(y1)))
ISNAT(n__s(n__s(x0))) → ISNAT(s(activate(x0)))
ACTIVATE(n__and(n__isNatList(x0), y1)) → AND(isNatList(x0), y1)
ISNATLIST(n__cons(n__and(x0, x1), y1)) → AND(isNat(and(activate(x0), x1)), n__isNatList(activate(y1)))
ISNATLIST(n__cons(x0, y1)) → AND(isNat(x0), n__isNatList(activate(y1)))
ISNATLIST(n__cons(n__0, y1)) → AND(isNat(0), n__isNatList(activate(y1)))
ISNATILIST(n__cons(n__cons(x0, x1), y1)) → AND(isNat(cons(activate(x0), x1)), n__isNatIList(activate(y1)))
ACTIVATE(n__s(X)) → ACTIVATE(X)
ISNATLIST(n__cons(n__isNatList(x0), y1)) → AND(isNat(isNatList(x0)), n__isNatList(activate(y1)))
ISNATLIST(n__cons(n__s(x0), y1)) → AND(isNat(s(activate(x0))), n__isNatList(activate(y1)))
ACTIVATE(n__and(n__take(x0, x1), y1)) → AND(take(activate(x0), activate(x1)), y1)
ISNAT(n__s(n__isNat(x0))) → ISNAT(isNat(x0))
ISNAT(n__s(n__0)) → ISNAT(0)
ISNATILIST(n__cons(n__length(x0), y1)) → AND(isNat(length(activate(x0))), n__isNatIList(activate(y1)))
ACTIVATE(n__and(n__s(x0), y1)) → AND(s(activate(x0)), y1)
ISNAT(n__s(V1)) → ACTIVATE(V1)
AND(tt, X) → ACTIVATE(X)
ISNATILIST(n__cons(n__nil, y1)) → AND(isNat(nil), n__isNatIList(activate(y1)))
ISNATILIST(n__cons(n__s(x0), y1)) → AND(isNat(s(activate(x0))), n__isNatIList(activate(y1)))
ISNATILIST(n__cons(n__isNatIList(x0), y1)) → AND(isNat(isNatIList(x0)), n__isNatIList(activate(y1)))
ISNAT(n__s(n__zeros)) → ISNAT(zeros)
ACTIVATE(n__and(x0, y1)) → AND(x0, y1)
ISNATILIST(n__cons(n__zeros, y1)) → AND(isNat(zeros), n__isNatIList(activate(y1)))
ISNATILIST(n__cons(x0, y1)) → AND(isNat(x0), n__isNatIList(activate(y1)))
ISNATILIST(n__cons(n__isNat(x0), y1)) → AND(isNat(isNat(x0)), n__isNatIList(activate(y1)))
ISNAT(n__s(n__and(x0, x1))) → ISNAT(and(activate(x0), x1))
ISNAT(n__s(n__take(x0, x1))) → ISNAT(take(activate(x0), activate(x1)))
ACTIVATE(n__isNatIList(X)) → ISNATILIST(X)
ISNAT(n__s(n__length(x0))) → ISNAT(length(activate(x0)))
ISNATILIST(n__cons(n__take(x0, x1), y1)) → AND(isNat(take(activate(x0), activate(x1))), n__isNatIList(activate(y1)))
ISNATLIST(n__cons(n__length(x0), y1)) → AND(isNat(length(activate(x0))), n__isNatList(activate(y1)))
ISNATILIST(n__cons(n__isNatList(x0), y1)) → AND(isNat(isNatList(x0)), n__isNatIList(activate(y1)))
ACTIVATE(n__and(n__length(x0), y1)) → AND(length(activate(x0)), y1)
ACTIVATE(n__and(n__and(x0, x1), y1)) → AND(and(activate(x0), x1), y1)
ISNAT(n__s(n__nil)) → ISNAT(nil)
ACTIVATE(n__and(X1, X2)) → ACTIVATE(X1)
ACTIVATE(n__isNatList(X)) → ISNATLIST(X)
ACTIVATE(n__and(n__isNat(x0), y1)) → AND(isNat(x0), y1)
ISNATLIST(n__cons(n__isNatIList(x0), y1)) → AND(isNat(isNatIList(x0)), n__isNatList(activate(y1)))
ISNATILIST(n__cons(n__and(x0, x1), y1)) → AND(isNat(and(activate(x0), x1)), n__isNatIList(activate(y1)))
ACTIVATE(n__and(n__nil, y1)) → AND(nil, y1)
ACTIVATE(n__and(n__zeros, y0)) → AND(cons(0, n__zeros), y0)
ISNATLIST(n__cons(n__isNat(x0), y1)) → AND(isNat(isNat(x0)), n__isNatList(activate(y1)))
ACTIVATE(n__and(n__0, y1)) → AND(0, y1)
ACTIVATE(n__and(n__cons(x0, x1), y1)) → AND(cons(activate(x0), x1), y1)
ISNAT(n__s(n__isNatIList(x0))) → ISNAT(isNatIList(x0))
ISNAT(n__s(n__cons(x0, x1))) → ISNAT(cons(activate(x0), x1))
ISNAT(n__s(n__isNatList(x0))) → ISNAT(isNatList(x0))
ISNATLIST(n__cons(n__cons(x0, x1), y1)) → AND(isNat(cons(activate(x0), x1)), n__isNatList(activate(y1)))
ACTIVATE(n__isNat(X)) → ISNAT(X)
ISNATILIST(n__cons(n__0, y1)) → AND(isNat(0), n__isNatIList(activate(y1)))
ISNATLIST(n__cons(n__nil, y1)) → AND(isNat(nil), n__isNatList(activate(y1)))
ACTIVATE(n__and(n__isNatIList(x0), y1)) → AND(isNatIList(x0), y1)
ISNAT(n__s(x0)) → ISNAT(x0)
ISNATLIST(n__cons(n__zeros, y1)) → AND(isNat(zeros), n__isNatList(activate(y1)))
The TRS R consists of the following rules:
zeros → cons(0, n__zeros)
U11(tt, L) → s(length(activate(L)))
U21(tt) → nil
U31(tt, IL, M, N) → cons(activate(N), n__take(activate(M), activate(IL)))
and(tt, X) → activate(X)
isNat(n__0) → tt
isNat(n__length(V1)) → isNatList(activate(V1))
isNat(n__s(V1)) → isNat(activate(V1))
isNatIList(V) → isNatList(activate(V))
isNatIList(n__zeros) → tt
isNatIList(n__cons(V1, V2)) → and(isNat(activate(V1)), n__isNatIList(activate(V2)))
isNatList(n__nil) → tt
isNatList(n__cons(V1, V2)) → and(isNat(activate(V1)), n__isNatList(activate(V2)))
isNatList(n__take(V1, V2)) → and(isNat(activate(V1)), n__isNatIList(activate(V2)))
length(nil) → 0
length(cons(N, L)) → U11(and(isNatList(activate(L)), n__isNat(N)), activate(L))
take(0, IL) → U21(isNatIList(IL))
take(s(M), cons(N, IL)) → U31(and(isNatIList(activate(IL)), n__and(n__isNat(M), n__isNat(N))), activate(IL), M, N)
zeros → n__zeros
take(X1, X2) → n__take(X1, X2)
0 → n__0
length(X) → n__length(X)
s(X) → n__s(X)
cons(X1, X2) → n__cons(X1, X2)
isNatIList(X) → n__isNatIList(X)
nil → n__nil
isNatList(X) → n__isNatList(X)
isNat(X) → n__isNat(X)
and(X1, X2) → n__and(X1, X2)
activate(n__zeros) → zeros
activate(n__take(X1, X2)) → take(activate(X1), activate(X2))
activate(n__0) → 0
activate(n__length(X)) → length(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(n__isNatIList(X)) → isNatIList(X)
activate(n__nil) → nil
activate(n__isNatList(X)) → isNatList(X)
activate(n__isNat(X)) → isNat(X)
activate(n__and(X1, X2)) → and(activate(X1), X2)
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By narrowing [15] the rule ACTIVATE(n__and(n__nil, y1)) → AND(nil, y1) at position [0] we obtained the following new rules:
ACTIVATE(n__and(n__nil, y0)) → AND(n__nil, y0)
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
ISNAT(n__s(n__s(x0))) → ISNAT(s(activate(x0)))
ISNATLIST(n__cons(n__take(x0, x1), y1)) → AND(isNat(take(activate(x0), activate(x1))), n__isNatList(activate(y1)))
ACTIVATE(n__and(n__isNatList(x0), y1)) → AND(isNatList(x0), y1)
ISNATLIST(n__cons(n__and(x0, x1), y1)) → AND(isNat(and(activate(x0), x1)), n__isNatList(activate(y1)))
ISNATLIST(n__cons(x0, y1)) → AND(isNat(x0), n__isNatList(activate(y1)))
ISNATILIST(n__cons(n__cons(x0, x1), y1)) → AND(isNat(cons(activate(x0), x1)), n__isNatIList(activate(y1)))
ISNATLIST(n__cons(n__0, y1)) → AND(isNat(0), n__isNatList(activate(y1)))
ACTIVATE(n__and(n__nil, y0)) → AND(n__nil, y0)
ACTIVATE(n__s(X)) → ACTIVATE(X)
ISNATLIST(n__cons(n__isNatList(x0), y1)) → AND(isNat(isNatList(x0)), n__isNatList(activate(y1)))
ISNATLIST(n__cons(n__s(x0), y1)) → AND(isNat(s(activate(x0))), n__isNatList(activate(y1)))
ACTIVATE(n__and(n__take(x0, x1), y1)) → AND(take(activate(x0), activate(x1)), y1)
ISNAT(n__s(n__0)) → ISNAT(0)
ISNAT(n__s(n__isNat(x0))) → ISNAT(isNat(x0))
ISNATILIST(n__cons(n__length(x0), y1)) → AND(isNat(length(activate(x0))), n__isNatIList(activate(y1)))
ACTIVATE(n__and(n__s(x0), y1)) → AND(s(activate(x0)), y1)
ISNATILIST(n__cons(n__nil, y1)) → AND(isNat(nil), n__isNatIList(activate(y1)))
AND(tt, X) → ACTIVATE(X)
ISNAT(n__s(V1)) → ACTIVATE(V1)
ISNATILIST(n__cons(n__s(x0), y1)) → AND(isNat(s(activate(x0))), n__isNatIList(activate(y1)))
ISNAT(n__s(n__zeros)) → ISNAT(zeros)
ISNATILIST(n__cons(n__isNatIList(x0), y1)) → AND(isNat(isNatIList(x0)), n__isNatIList(activate(y1)))
ACTIVATE(n__and(x0, y1)) → AND(x0, y1)
ISNATILIST(n__cons(n__zeros, y1)) → AND(isNat(zeros), n__isNatIList(activate(y1)))
ISNATILIST(n__cons(x0, y1)) → AND(isNat(x0), n__isNatIList(activate(y1)))
ISNAT(n__s(n__take(x0, x1))) → ISNAT(take(activate(x0), activate(x1)))
ISNAT(n__s(n__and(x0, x1))) → ISNAT(and(activate(x0), x1))
ISNATILIST(n__cons(n__isNat(x0), y1)) → AND(isNat(isNat(x0)), n__isNatIList(activate(y1)))
ISNAT(n__s(n__length(x0))) → ISNAT(length(activate(x0)))
ACTIVATE(n__isNatIList(X)) → ISNATILIST(X)
ISNATLIST(n__cons(n__length(x0), y1)) → AND(isNat(length(activate(x0))), n__isNatList(activate(y1)))
ISNATILIST(n__cons(n__take(x0, x1), y1)) → AND(isNat(take(activate(x0), activate(x1))), n__isNatIList(activate(y1)))
ISNATILIST(n__cons(n__isNatList(x0), y1)) → AND(isNat(isNatList(x0)), n__isNatIList(activate(y1)))
ACTIVATE(n__and(n__length(x0), y1)) → AND(length(activate(x0)), y1)
ISNAT(n__s(n__nil)) → ISNAT(nil)
ACTIVATE(n__and(n__and(x0, x1), y1)) → AND(and(activate(x0), x1), y1)
ACTIVATE(n__and(X1, X2)) → ACTIVATE(X1)
ACTIVATE(n__isNatList(X)) → ISNATLIST(X)
ISNATLIST(n__cons(n__isNatIList(x0), y1)) → AND(isNat(isNatIList(x0)), n__isNatList(activate(y1)))
ACTIVATE(n__and(n__isNat(x0), y1)) → AND(isNat(x0), y1)
ISNATILIST(n__cons(n__and(x0, x1), y1)) → AND(isNat(and(activate(x0), x1)), n__isNatIList(activate(y1)))
ACTIVATE(n__and(n__zeros, y0)) → AND(cons(0, n__zeros), y0)
ACTIVATE(n__and(n__0, y1)) → AND(0, y1)
ISNATLIST(n__cons(n__isNat(x0), y1)) → AND(isNat(isNat(x0)), n__isNatList(activate(y1)))
ACTIVATE(n__and(n__cons(x0, x1), y1)) → AND(cons(activate(x0), x1), y1)
ISNAT(n__s(n__isNatIList(x0))) → ISNAT(isNatIList(x0))
ISNAT(n__s(n__cons(x0, x1))) → ISNAT(cons(activate(x0), x1))
ISNAT(n__s(n__isNatList(x0))) → ISNAT(isNatList(x0))
ISNATLIST(n__cons(n__cons(x0, x1), y1)) → AND(isNat(cons(activate(x0), x1)), n__isNatList(activate(y1)))
ACTIVATE(n__isNat(X)) → ISNAT(X)
ISNATLIST(n__cons(n__nil, y1)) → AND(isNat(nil), n__isNatList(activate(y1)))
ISNATILIST(n__cons(n__0, y1)) → AND(isNat(0), n__isNatIList(activate(y1)))
ISNAT(n__s(x0)) → ISNAT(x0)
ACTIVATE(n__and(n__isNatIList(x0), y1)) → AND(isNatIList(x0), y1)
ISNATLIST(n__cons(n__zeros, y1)) → AND(isNat(zeros), n__isNatList(activate(y1)))
The TRS R consists of the following rules:
zeros → cons(0, n__zeros)
U11(tt, L) → s(length(activate(L)))
U21(tt) → nil
U31(tt, IL, M, N) → cons(activate(N), n__take(activate(M), activate(IL)))
and(tt, X) → activate(X)
isNat(n__0) → tt
isNat(n__length(V1)) → isNatList(activate(V1))
isNat(n__s(V1)) → isNat(activate(V1))
isNatIList(V) → isNatList(activate(V))
isNatIList(n__zeros) → tt
isNatIList(n__cons(V1, V2)) → and(isNat(activate(V1)), n__isNatIList(activate(V2)))
isNatList(n__nil) → tt
isNatList(n__cons(V1, V2)) → and(isNat(activate(V1)), n__isNatList(activate(V2)))
isNatList(n__take(V1, V2)) → and(isNat(activate(V1)), n__isNatIList(activate(V2)))
length(nil) → 0
length(cons(N, L)) → U11(and(isNatList(activate(L)), n__isNat(N)), activate(L))
take(0, IL) → U21(isNatIList(IL))
take(s(M), cons(N, IL)) → U31(and(isNatIList(activate(IL)), n__and(n__isNat(M), n__isNat(N))), activate(IL), M, N)
zeros → n__zeros
take(X1, X2) → n__take(X1, X2)
0 → n__0
length(X) → n__length(X)
s(X) → n__s(X)
cons(X1, X2) → n__cons(X1, X2)
isNatIList(X) → n__isNatIList(X)
nil → n__nil
isNatList(X) → n__isNatList(X)
isNat(X) → n__isNat(X)
and(X1, X2) → n__and(X1, X2)
activate(n__zeros) → zeros
activate(n__take(X1, X2)) → take(activate(X1), activate(X2))
activate(n__0) → 0
activate(n__length(X)) → length(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(n__isNatIList(X)) → isNatIList(X)
activate(n__nil) → nil
activate(n__isNatList(X)) → isNatList(X)
activate(n__isNat(X)) → isNat(X)
activate(n__and(X1, X2)) → and(activate(X1), X2)
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 1 SCC with 1 less node.
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
ISNATLIST(n__cons(n__take(x0, x1), y1)) → AND(isNat(take(activate(x0), activate(x1))), n__isNatList(activate(y1)))
ISNAT(n__s(n__s(x0))) → ISNAT(s(activate(x0)))
ACTIVATE(n__and(n__isNatList(x0), y1)) → AND(isNatList(x0), y1)
ISNATLIST(n__cons(n__and(x0, x1), y1)) → AND(isNat(and(activate(x0), x1)), n__isNatList(activate(y1)))
ISNATLIST(n__cons(x0, y1)) → AND(isNat(x0), n__isNatList(activate(y1)))
ISNATLIST(n__cons(n__0, y1)) → AND(isNat(0), n__isNatList(activate(y1)))
ISNATILIST(n__cons(n__cons(x0, x1), y1)) → AND(isNat(cons(activate(x0), x1)), n__isNatIList(activate(y1)))
ACTIVATE(n__s(X)) → ACTIVATE(X)
ISNATLIST(n__cons(n__isNatList(x0), y1)) → AND(isNat(isNatList(x0)), n__isNatList(activate(y1)))
ISNATLIST(n__cons(n__s(x0), y1)) → AND(isNat(s(activate(x0))), n__isNatList(activate(y1)))
ACTIVATE(n__and(n__take(x0, x1), y1)) → AND(take(activate(x0), activate(x1)), y1)
ISNAT(n__s(n__isNat(x0))) → ISNAT(isNat(x0))
ISNAT(n__s(n__0)) → ISNAT(0)
ISNATILIST(n__cons(n__length(x0), y1)) → AND(isNat(length(activate(x0))), n__isNatIList(activate(y1)))
ACTIVATE(n__and(n__s(x0), y1)) → AND(s(activate(x0)), y1)
ISNAT(n__s(V1)) → ACTIVATE(V1)
AND(tt, X) → ACTIVATE(X)
ISNATILIST(n__cons(n__nil, y1)) → AND(isNat(nil), n__isNatIList(activate(y1)))
ISNATILIST(n__cons(n__s(x0), y1)) → AND(isNat(s(activate(x0))), n__isNatIList(activate(y1)))
ISNAT(n__s(n__zeros)) → ISNAT(zeros)
ISNATILIST(n__cons(n__isNatIList(x0), y1)) → AND(isNat(isNatIList(x0)), n__isNatIList(activate(y1)))
ACTIVATE(n__and(x0, y1)) → AND(x0, y1)
ISNATILIST(n__cons(n__zeros, y1)) → AND(isNat(zeros), n__isNatIList(activate(y1)))
ISNATILIST(n__cons(x0, y1)) → AND(isNat(x0), n__isNatIList(activate(y1)))
ISNATILIST(n__cons(n__isNat(x0), y1)) → AND(isNat(isNat(x0)), n__isNatIList(activate(y1)))
ISNAT(n__s(n__and(x0, x1))) → ISNAT(and(activate(x0), x1))
ISNAT(n__s(n__take(x0, x1))) → ISNAT(take(activate(x0), activate(x1)))
ACTIVATE(n__isNatIList(X)) → ISNATILIST(X)
ISNAT(n__s(n__length(x0))) → ISNAT(length(activate(x0)))
ISNATILIST(n__cons(n__take(x0, x1), y1)) → AND(isNat(take(activate(x0), activate(x1))), n__isNatIList(activate(y1)))
ISNATLIST(n__cons(n__length(x0), y1)) → AND(isNat(length(activate(x0))), n__isNatList(activate(y1)))
ISNATILIST(n__cons(n__isNatList(x0), y1)) → AND(isNat(isNatList(x0)), n__isNatIList(activate(y1)))
ACTIVATE(n__and(n__length(x0), y1)) → AND(length(activate(x0)), y1)
ACTIVATE(n__and(n__and(x0, x1), y1)) → AND(and(activate(x0), x1), y1)
ISNAT(n__s(n__nil)) → ISNAT(nil)
ACTIVATE(n__and(X1, X2)) → ACTIVATE(X1)
ACTIVATE(n__isNatList(X)) → ISNATLIST(X)
ACTIVATE(n__and(n__isNat(x0), y1)) → AND(isNat(x0), y1)
ISNATLIST(n__cons(n__isNatIList(x0), y1)) → AND(isNat(isNatIList(x0)), n__isNatList(activate(y1)))
ISNATILIST(n__cons(n__and(x0, x1), y1)) → AND(isNat(and(activate(x0), x1)), n__isNatIList(activate(y1)))
ACTIVATE(n__and(n__zeros, y0)) → AND(cons(0, n__zeros), y0)
ISNATLIST(n__cons(n__isNat(x0), y1)) → AND(isNat(isNat(x0)), n__isNatList(activate(y1)))
ACTIVATE(n__and(n__0, y1)) → AND(0, y1)
ACTIVATE(n__and(n__cons(x0, x1), y1)) → AND(cons(activate(x0), x1), y1)
ISNAT(n__s(n__isNatIList(x0))) → ISNAT(isNatIList(x0))
ISNAT(n__s(n__cons(x0, x1))) → ISNAT(cons(activate(x0), x1))
ISNAT(n__s(n__isNatList(x0))) → ISNAT(isNatList(x0))
ISNATLIST(n__cons(n__cons(x0, x1), y1)) → AND(isNat(cons(activate(x0), x1)), n__isNatList(activate(y1)))
ACTIVATE(n__isNat(X)) → ISNAT(X)
ISNATILIST(n__cons(n__0, y1)) → AND(isNat(0), n__isNatIList(activate(y1)))
ISNATLIST(n__cons(n__nil, y1)) → AND(isNat(nil), n__isNatList(activate(y1)))
ACTIVATE(n__and(n__isNatIList(x0), y1)) → AND(isNatIList(x0), y1)
ISNAT(n__s(x0)) → ISNAT(x0)
ISNATLIST(n__cons(n__zeros, y1)) → AND(isNat(zeros), n__isNatList(activate(y1)))
The TRS R consists of the following rules:
zeros → cons(0, n__zeros)
U11(tt, L) → s(length(activate(L)))
U21(tt) → nil
U31(tt, IL, M, N) → cons(activate(N), n__take(activate(M), activate(IL)))
and(tt, X) → activate(X)
isNat(n__0) → tt
isNat(n__length(V1)) → isNatList(activate(V1))
isNat(n__s(V1)) → isNat(activate(V1))
isNatIList(V) → isNatList(activate(V))
isNatIList(n__zeros) → tt
isNatIList(n__cons(V1, V2)) → and(isNat(activate(V1)), n__isNatIList(activate(V2)))
isNatList(n__nil) → tt
isNatList(n__cons(V1, V2)) → and(isNat(activate(V1)), n__isNatList(activate(V2)))
isNatList(n__take(V1, V2)) → and(isNat(activate(V1)), n__isNatIList(activate(V2)))
length(nil) → 0
length(cons(N, L)) → U11(and(isNatList(activate(L)), n__isNat(N)), activate(L))
take(0, IL) → U21(isNatIList(IL))
take(s(M), cons(N, IL)) → U31(and(isNatIList(activate(IL)), n__and(n__isNat(M), n__isNat(N))), activate(IL), M, N)
zeros → n__zeros
take(X1, X2) → n__take(X1, X2)
0 → n__0
length(X) → n__length(X)
s(X) → n__s(X)
cons(X1, X2) → n__cons(X1, X2)
isNatIList(X) → n__isNatIList(X)
nil → n__nil
isNatList(X) → n__isNatList(X)
isNat(X) → n__isNat(X)
and(X1, X2) → n__and(X1, X2)
activate(n__zeros) → zeros
activate(n__take(X1, X2)) → take(activate(X1), activate(X2))
activate(n__0) → 0
activate(n__length(X)) → length(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(n__isNatIList(X)) → isNatIList(X)
activate(n__nil) → nil
activate(n__isNatList(X)) → isNatList(X)
activate(n__isNat(X)) → isNat(X)
activate(n__and(X1, X2)) → and(activate(X1), X2)
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By narrowing [15] the rule ACTIVATE(n__and(n__0, y1)) → AND(0, y1) at position [0] we obtained the following new rules:
ACTIVATE(n__and(n__0, y0)) → AND(n__0, y0)
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
ISNAT(n__s(n__s(x0))) → ISNAT(s(activate(x0)))
ISNATLIST(n__cons(n__take(x0, x1), y1)) → AND(isNat(take(activate(x0), activate(x1))), n__isNatList(activate(y1)))
ACTIVATE(n__and(n__isNatList(x0), y1)) → AND(isNatList(x0), y1)
ISNATLIST(n__cons(n__and(x0, x1), y1)) → AND(isNat(and(activate(x0), x1)), n__isNatList(activate(y1)))
ISNATLIST(n__cons(x0, y1)) → AND(isNat(x0), n__isNatList(activate(y1)))
ISNATILIST(n__cons(n__cons(x0, x1), y1)) → AND(isNat(cons(activate(x0), x1)), n__isNatIList(activate(y1)))
ISNATLIST(n__cons(n__0, y1)) → AND(isNat(0), n__isNatList(activate(y1)))
ACTIVATE(n__s(X)) → ACTIVATE(X)
ISNATLIST(n__cons(n__isNatList(x0), y1)) → AND(isNat(isNatList(x0)), n__isNatList(activate(y1)))
ACTIVATE(n__and(n__0, y0)) → AND(n__0, y0)
ISNATLIST(n__cons(n__s(x0), y1)) → AND(isNat(s(activate(x0))), n__isNatList(activate(y1)))
ACTIVATE(n__and(n__take(x0, x1), y1)) → AND(take(activate(x0), activate(x1)), y1)
ISNAT(n__s(n__0)) → ISNAT(0)
ISNAT(n__s(n__isNat(x0))) → ISNAT(isNat(x0))
ISNATILIST(n__cons(n__length(x0), y1)) → AND(isNat(length(activate(x0))), n__isNatIList(activate(y1)))
ACTIVATE(n__and(n__s(x0), y1)) → AND(s(activate(x0)), y1)
ISNATILIST(n__cons(n__nil, y1)) → AND(isNat(nil), n__isNatIList(activate(y1)))
AND(tt, X) → ACTIVATE(X)
ISNAT(n__s(V1)) → ACTIVATE(V1)
ISNATILIST(n__cons(n__s(x0), y1)) → AND(isNat(s(activate(x0))), n__isNatIList(activate(y1)))
ISNATILIST(n__cons(n__isNatIList(x0), y1)) → AND(isNat(isNatIList(x0)), n__isNatIList(activate(y1)))
ISNAT(n__s(n__zeros)) → ISNAT(zeros)
ACTIVATE(n__and(x0, y1)) → AND(x0, y1)
ISNATILIST(n__cons(n__zeros, y1)) → AND(isNat(zeros), n__isNatIList(activate(y1)))
ISNATILIST(n__cons(x0, y1)) → AND(isNat(x0), n__isNatIList(activate(y1)))
ISNAT(n__s(n__take(x0, x1))) → ISNAT(take(activate(x0), activate(x1)))
ISNAT(n__s(n__and(x0, x1))) → ISNAT(and(activate(x0), x1))
ISNATILIST(n__cons(n__isNat(x0), y1)) → AND(isNat(isNat(x0)), n__isNatIList(activate(y1)))
ISNAT(n__s(n__length(x0))) → ISNAT(length(activate(x0)))
ACTIVATE(n__isNatIList(X)) → ISNATILIST(X)
ISNATLIST(n__cons(n__length(x0), y1)) → AND(isNat(length(activate(x0))), n__isNatList(activate(y1)))
ISNATILIST(n__cons(n__take(x0, x1), y1)) → AND(isNat(take(activate(x0), activate(x1))), n__isNatIList(activate(y1)))
ISNATILIST(n__cons(n__isNatList(x0), y1)) → AND(isNat(isNatList(x0)), n__isNatIList(activate(y1)))
ACTIVATE(n__and(n__length(x0), y1)) → AND(length(activate(x0)), y1)
ISNAT(n__s(n__nil)) → ISNAT(nil)
ACTIVATE(n__and(n__and(x0, x1), y1)) → AND(and(activate(x0), x1), y1)
ACTIVATE(n__and(X1, X2)) → ACTIVATE(X1)
ACTIVATE(n__isNatList(X)) → ISNATLIST(X)
ISNATLIST(n__cons(n__isNatIList(x0), y1)) → AND(isNat(isNatIList(x0)), n__isNatList(activate(y1)))
ACTIVATE(n__and(n__isNat(x0), y1)) → AND(isNat(x0), y1)
ISNATILIST(n__cons(n__and(x0, x1), y1)) → AND(isNat(and(activate(x0), x1)), n__isNatIList(activate(y1)))
ACTIVATE(n__and(n__zeros, y0)) → AND(cons(0, n__zeros), y0)
ISNATLIST(n__cons(n__isNat(x0), y1)) → AND(isNat(isNat(x0)), n__isNatList(activate(y1)))
ACTIVATE(n__and(n__cons(x0, x1), y1)) → AND(cons(activate(x0), x1), y1)
ISNAT(n__s(n__isNatIList(x0))) → ISNAT(isNatIList(x0))
ISNAT(n__s(n__cons(x0, x1))) → ISNAT(cons(activate(x0), x1))
ISNAT(n__s(n__isNatList(x0))) → ISNAT(isNatList(x0))
ISNATLIST(n__cons(n__cons(x0, x1), y1)) → AND(isNat(cons(activate(x0), x1)), n__isNatList(activate(y1)))
ACTIVATE(n__isNat(X)) → ISNAT(X)
ISNATLIST(n__cons(n__nil, y1)) → AND(isNat(nil), n__isNatList(activate(y1)))
ISNATILIST(n__cons(n__0, y1)) → AND(isNat(0), n__isNatIList(activate(y1)))
ISNAT(n__s(x0)) → ISNAT(x0)
ACTIVATE(n__and(n__isNatIList(x0), y1)) → AND(isNatIList(x0), y1)
ISNATLIST(n__cons(n__zeros, y1)) → AND(isNat(zeros), n__isNatList(activate(y1)))
The TRS R consists of the following rules:
zeros → cons(0, n__zeros)
U11(tt, L) → s(length(activate(L)))
U21(tt) → nil
U31(tt, IL, M, N) → cons(activate(N), n__take(activate(M), activate(IL)))
and(tt, X) → activate(X)
isNat(n__0) → tt
isNat(n__length(V1)) → isNatList(activate(V1))
isNat(n__s(V1)) → isNat(activate(V1))
isNatIList(V) → isNatList(activate(V))
isNatIList(n__zeros) → tt
isNatIList(n__cons(V1, V2)) → and(isNat(activate(V1)), n__isNatIList(activate(V2)))
isNatList(n__nil) → tt
isNatList(n__cons(V1, V2)) → and(isNat(activate(V1)), n__isNatList(activate(V2)))
isNatList(n__take(V1, V2)) → and(isNat(activate(V1)), n__isNatIList(activate(V2)))
length(nil) → 0
length(cons(N, L)) → U11(and(isNatList(activate(L)), n__isNat(N)), activate(L))
take(0, IL) → U21(isNatIList(IL))
take(s(M), cons(N, IL)) → U31(and(isNatIList(activate(IL)), n__and(n__isNat(M), n__isNat(N))), activate(IL), M, N)
zeros → n__zeros
take(X1, X2) → n__take(X1, X2)
0 → n__0
length(X) → n__length(X)
s(X) → n__s(X)
cons(X1, X2) → n__cons(X1, X2)
isNatIList(X) → n__isNatIList(X)
nil → n__nil
isNatList(X) → n__isNatList(X)
isNat(X) → n__isNat(X)
and(X1, X2) → n__and(X1, X2)
activate(n__zeros) → zeros
activate(n__take(X1, X2)) → take(activate(X1), activate(X2))
activate(n__0) → 0
activate(n__length(X)) → length(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(n__isNatIList(X)) → isNatIList(X)
activate(n__nil) → nil
activate(n__isNatList(X)) → isNatList(X)
activate(n__isNat(X)) → isNat(X)
activate(n__and(X1, X2)) → and(activate(X1), X2)
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 1 SCC with 1 less node.
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
ISNATLIST(n__cons(n__take(x0, x1), y1)) → AND(isNat(take(activate(x0), activate(x1))), n__isNatList(activate(y1)))
ISNAT(n__s(n__s(x0))) → ISNAT(s(activate(x0)))
ACTIVATE(n__and(n__isNatList(x0), y1)) → AND(isNatList(x0), y1)
ISNATLIST(n__cons(n__and(x0, x1), y1)) → AND(isNat(and(activate(x0), x1)), n__isNatList(activate(y1)))
ISNATLIST(n__cons(x0, y1)) → AND(isNat(x0), n__isNatList(activate(y1)))
ISNATLIST(n__cons(n__0, y1)) → AND(isNat(0), n__isNatList(activate(y1)))
ISNATILIST(n__cons(n__cons(x0, x1), y1)) → AND(isNat(cons(activate(x0), x1)), n__isNatIList(activate(y1)))
ACTIVATE(n__s(X)) → ACTIVATE(X)
ISNATLIST(n__cons(n__isNatList(x0), y1)) → AND(isNat(isNatList(x0)), n__isNatList(activate(y1)))
ISNATLIST(n__cons(n__s(x0), y1)) → AND(isNat(s(activate(x0))), n__isNatList(activate(y1)))
ACTIVATE(n__and(n__take(x0, x1), y1)) → AND(take(activate(x0), activate(x1)), y1)
ISNAT(n__s(n__isNat(x0))) → ISNAT(isNat(x0))
ISNAT(n__s(n__0)) → ISNAT(0)
ISNATILIST(n__cons(n__length(x0), y1)) → AND(isNat(length(activate(x0))), n__isNatIList(activate(y1)))
ACTIVATE(n__and(n__s(x0), y1)) → AND(s(activate(x0)), y1)
AND(tt, X) → ACTIVATE(X)
ISNATILIST(n__cons(n__nil, y1)) → AND(isNat(nil), n__isNatIList(activate(y1)))
ISNAT(n__s(V1)) → ACTIVATE(V1)
ISNATILIST(n__cons(n__s(x0), y1)) → AND(isNat(s(activate(x0))), n__isNatIList(activate(y1)))
ISNAT(n__s(n__zeros)) → ISNAT(zeros)
ISNATILIST(n__cons(n__isNatIList(x0), y1)) → AND(isNat(isNatIList(x0)), n__isNatIList(activate(y1)))
ACTIVATE(n__and(x0, y1)) → AND(x0, y1)
ISNATILIST(n__cons(n__zeros, y1)) → AND(isNat(zeros), n__isNatIList(activate(y1)))
ISNATILIST(n__cons(x0, y1)) → AND(isNat(x0), n__isNatIList(activate(y1)))
ISNATILIST(n__cons(n__isNat(x0), y1)) → AND(isNat(isNat(x0)), n__isNatIList(activate(y1)))
ISNAT(n__s(n__and(x0, x1))) → ISNAT(and(activate(x0), x1))
ISNAT(n__s(n__take(x0, x1))) → ISNAT(take(activate(x0), activate(x1)))
ACTIVATE(n__isNatIList(X)) → ISNATILIST(X)
ISNAT(n__s(n__length(x0))) → ISNAT(length(activate(x0)))
ISNATLIST(n__cons(n__length(x0), y1)) → AND(isNat(length(activate(x0))), n__isNatList(activate(y1)))
ISNATILIST(n__cons(n__take(x0, x1), y1)) → AND(isNat(take(activate(x0), activate(x1))), n__isNatIList(activate(y1)))
ISNATILIST(n__cons(n__isNatList(x0), y1)) → AND(isNat(isNatList(x0)), n__isNatIList(activate(y1)))
ACTIVATE(n__and(n__length(x0), y1)) → AND(length(activate(x0)), y1)
ISNAT(n__s(n__nil)) → ISNAT(nil)
ACTIVATE(n__and(n__and(x0, x1), y1)) → AND(and(activate(x0), x1), y1)
ACTIVATE(n__and(X1, X2)) → ACTIVATE(X1)
ACTIVATE(n__isNatList(X)) → ISNATLIST(X)
ISNATLIST(n__cons(n__isNatIList(x0), y1)) → AND(isNat(isNatIList(x0)), n__isNatList(activate(y1)))
ACTIVATE(n__and(n__isNat(x0), y1)) → AND(isNat(x0), y1)
ISNATILIST(n__cons(n__and(x0, x1), y1)) → AND(isNat(and(activate(x0), x1)), n__isNatIList(activate(y1)))
ACTIVATE(n__and(n__zeros, y0)) → AND(cons(0, n__zeros), y0)
ISNATLIST(n__cons(n__isNat(x0), y1)) → AND(isNat(isNat(x0)), n__isNatList(activate(y1)))
ACTIVATE(n__and(n__cons(x0, x1), y1)) → AND(cons(activate(x0), x1), y1)
ISNAT(n__s(n__isNatIList(x0))) → ISNAT(isNatIList(x0))
ISNAT(n__s(n__cons(x0, x1))) → ISNAT(cons(activate(x0), x1))
ISNAT(n__s(n__isNatList(x0))) → ISNAT(isNatList(x0))
ISNATLIST(n__cons(n__cons(x0, x1), y1)) → AND(isNat(cons(activate(x0), x1)), n__isNatList(activate(y1)))
ACTIVATE(n__isNat(X)) → ISNAT(X)
ISNATLIST(n__cons(n__nil, y1)) → AND(isNat(nil), n__isNatList(activate(y1)))
ISNATILIST(n__cons(n__0, y1)) → AND(isNat(0), n__isNatIList(activate(y1)))
ISNAT(n__s(x0)) → ISNAT(x0)
ACTIVATE(n__and(n__isNatIList(x0), y1)) → AND(isNatIList(x0), y1)
ISNATLIST(n__cons(n__zeros, y1)) → AND(isNat(zeros), n__isNatList(activate(y1)))
The TRS R consists of the following rules:
zeros → cons(0, n__zeros)
U11(tt, L) → s(length(activate(L)))
U21(tt) → nil
U31(tt, IL, M, N) → cons(activate(N), n__take(activate(M), activate(IL)))
and(tt, X) → activate(X)
isNat(n__0) → tt
isNat(n__length(V1)) → isNatList(activate(V1))
isNat(n__s(V1)) → isNat(activate(V1))
isNatIList(V) → isNatList(activate(V))
isNatIList(n__zeros) → tt
isNatIList(n__cons(V1, V2)) → and(isNat(activate(V1)), n__isNatIList(activate(V2)))
isNatList(n__nil) → tt
isNatList(n__cons(V1, V2)) → and(isNat(activate(V1)), n__isNatList(activate(V2)))
isNatList(n__take(V1, V2)) → and(isNat(activate(V1)), n__isNatIList(activate(V2)))
length(nil) → 0
length(cons(N, L)) → U11(and(isNatList(activate(L)), n__isNat(N)), activate(L))
take(0, IL) → U21(isNatIList(IL))
take(s(M), cons(N, IL)) → U31(and(isNatIList(activate(IL)), n__and(n__isNat(M), n__isNat(N))), activate(IL), M, N)
zeros → n__zeros
take(X1, X2) → n__take(X1, X2)
0 → n__0
length(X) → n__length(X)
s(X) → n__s(X)
cons(X1, X2) → n__cons(X1, X2)
isNatIList(X) → n__isNatIList(X)
nil → n__nil
isNatList(X) → n__isNatList(X)
isNat(X) → n__isNat(X)
and(X1, X2) → n__and(X1, X2)
activate(n__zeros) → zeros
activate(n__take(X1, X2)) → take(activate(X1), activate(X2))
activate(n__0) → 0
activate(n__length(X)) → length(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(n__isNatIList(X)) → isNatIList(X)
activate(n__nil) → nil
activate(n__isNatList(X)) → isNatList(X)
activate(n__isNat(X)) → isNat(X)
activate(n__and(X1, X2)) → and(activate(X1), X2)
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By narrowing [15] the rule ACTIVATE(n__and(n__zeros, y0)) → AND(cons(0, n__zeros), y0) at position [0] we obtained the following new rules:
ACTIVATE(n__and(n__zeros, y0)) → AND(cons(n__0, n__zeros), y0)
ACTIVATE(n__and(n__zeros, y0)) → AND(n__cons(0, n__zeros), y0)
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
ISNAT(n__s(n__s(x0))) → ISNAT(s(activate(x0)))
ISNATLIST(n__cons(n__take(x0, x1), y1)) → AND(isNat(take(activate(x0), activate(x1))), n__isNatList(activate(y1)))
ACTIVATE(n__and(n__isNatList(x0), y1)) → AND(isNatList(x0), y1)
ISNATLIST(n__cons(n__and(x0, x1), y1)) → AND(isNat(and(activate(x0), x1)), n__isNatList(activate(y1)))
ISNATLIST(n__cons(x0, y1)) → AND(isNat(x0), n__isNatList(activate(y1)))
ISNATILIST(n__cons(n__cons(x0, x1), y1)) → AND(isNat(cons(activate(x0), x1)), n__isNatIList(activate(y1)))
ISNATLIST(n__cons(n__0, y1)) → AND(isNat(0), n__isNatList(activate(y1)))
ACTIVATE(n__s(X)) → ACTIVATE(X)
ACTIVATE(n__and(n__zeros, y0)) → AND(n__cons(0, n__zeros), y0)
ISNATLIST(n__cons(n__isNatList(x0), y1)) → AND(isNat(isNatList(x0)), n__isNatList(activate(y1)))
ISNATLIST(n__cons(n__s(x0), y1)) → AND(isNat(s(activate(x0))), n__isNatList(activate(y1)))
ACTIVATE(n__and(n__take(x0, x1), y1)) → AND(take(activate(x0), activate(x1)), y1)
ISNAT(n__s(n__0)) → ISNAT(0)
ISNAT(n__s(n__isNat(x0))) → ISNAT(isNat(x0))
ISNATILIST(n__cons(n__length(x0), y1)) → AND(isNat(length(activate(x0))), n__isNatIList(activate(y1)))
ACTIVATE(n__and(n__s(x0), y1)) → AND(s(activate(x0)), y1)
ISNAT(n__s(V1)) → ACTIVATE(V1)
ISNATILIST(n__cons(n__nil, y1)) → AND(isNat(nil), n__isNatIList(activate(y1)))
AND(tt, X) → ACTIVATE(X)
ISNATILIST(n__cons(n__s(x0), y1)) → AND(isNat(s(activate(x0))), n__isNatIList(activate(y1)))
ISNATILIST(n__cons(n__isNatIList(x0), y1)) → AND(isNat(isNatIList(x0)), n__isNatIList(activate(y1)))
ISNAT(n__s(n__zeros)) → ISNAT(zeros)
ACTIVATE(n__and(x0, y1)) → AND(x0, y1)
ISNATILIST(n__cons(n__zeros, y1)) → AND(isNat(zeros), n__isNatIList(activate(y1)))
ISNATILIST(n__cons(x0, y1)) → AND(isNat(x0), n__isNatIList(activate(y1)))
ISNAT(n__s(n__take(x0, x1))) → ISNAT(take(activate(x0), activate(x1)))
ISNAT(n__s(n__and(x0, x1))) → ISNAT(and(activate(x0), x1))
ISNATILIST(n__cons(n__isNat(x0), y1)) → AND(isNat(isNat(x0)), n__isNatIList(activate(y1)))
ISNAT(n__s(n__length(x0))) → ISNAT(length(activate(x0)))
ACTIVATE(n__isNatIList(X)) → ISNATILIST(X)
ISNATILIST(n__cons(n__take(x0, x1), y1)) → AND(isNat(take(activate(x0), activate(x1))), n__isNatIList(activate(y1)))
ISNATLIST(n__cons(n__length(x0), y1)) → AND(isNat(length(activate(x0))), n__isNatList(activate(y1)))
ISNATILIST(n__cons(n__isNatList(x0), y1)) → AND(isNat(isNatList(x0)), n__isNatIList(activate(y1)))
ACTIVATE(n__and(n__length(x0), y1)) → AND(length(activate(x0)), y1)
ACTIVATE(n__and(n__and(x0, x1), y1)) → AND(and(activate(x0), x1), y1)
ISNAT(n__s(n__nil)) → ISNAT(nil)
ACTIVATE(n__and(X1, X2)) → ACTIVATE(X1)
ACTIVATE(n__isNatList(X)) → ISNATLIST(X)
ACTIVATE(n__and(n__isNat(x0), y1)) → AND(isNat(x0), y1)
ISNATLIST(n__cons(n__isNatIList(x0), y1)) → AND(isNat(isNatIList(x0)), n__isNatList(activate(y1)))
ISNATILIST(n__cons(n__and(x0, x1), y1)) → AND(isNat(and(activate(x0), x1)), n__isNatIList(activate(y1)))
ISNATLIST(n__cons(n__isNat(x0), y1)) → AND(isNat(isNat(x0)), n__isNatList(activate(y1)))
ACTIVATE(n__and(n__cons(x0, x1), y1)) → AND(cons(activate(x0), x1), y1)
ISNAT(n__s(n__isNatIList(x0))) → ISNAT(isNatIList(x0))
ISNAT(n__s(n__cons(x0, x1))) → ISNAT(cons(activate(x0), x1))
ISNAT(n__s(n__isNatList(x0))) → ISNAT(isNatList(x0))
ISNATLIST(n__cons(n__cons(x0, x1), y1)) → AND(isNat(cons(activate(x0), x1)), n__isNatList(activate(y1)))
ACTIVATE(n__and(n__zeros, y0)) → AND(cons(n__0, n__zeros), y0)
ACTIVATE(n__isNat(X)) → ISNAT(X)
ISNATILIST(n__cons(n__0, y1)) → AND(isNat(0), n__isNatIList(activate(y1)))
ISNATLIST(n__cons(n__nil, y1)) → AND(isNat(nil), n__isNatList(activate(y1)))
ACTIVATE(n__and(n__isNatIList(x0), y1)) → AND(isNatIList(x0), y1)
ISNAT(n__s(x0)) → ISNAT(x0)
ISNATLIST(n__cons(n__zeros, y1)) → AND(isNat(zeros), n__isNatList(activate(y1)))
The TRS R consists of the following rules:
zeros → cons(0, n__zeros)
U11(tt, L) → s(length(activate(L)))
U21(tt) → nil
U31(tt, IL, M, N) → cons(activate(N), n__take(activate(M), activate(IL)))
and(tt, X) → activate(X)
isNat(n__0) → tt
isNat(n__length(V1)) → isNatList(activate(V1))
isNat(n__s(V1)) → isNat(activate(V1))
isNatIList(V) → isNatList(activate(V))
isNatIList(n__zeros) → tt
isNatIList(n__cons(V1, V2)) → and(isNat(activate(V1)), n__isNatIList(activate(V2)))
isNatList(n__nil) → tt
isNatList(n__cons(V1, V2)) → and(isNat(activate(V1)), n__isNatList(activate(V2)))
isNatList(n__take(V1, V2)) → and(isNat(activate(V1)), n__isNatIList(activate(V2)))
length(nil) → 0
length(cons(N, L)) → U11(and(isNatList(activate(L)), n__isNat(N)), activate(L))
take(0, IL) → U21(isNatIList(IL))
take(s(M), cons(N, IL)) → U31(and(isNatIList(activate(IL)), n__and(n__isNat(M), n__isNat(N))), activate(IL), M, N)
zeros → n__zeros
take(X1, X2) → n__take(X1, X2)
0 → n__0
length(X) → n__length(X)
s(X) → n__s(X)
cons(X1, X2) → n__cons(X1, X2)
isNatIList(X) → n__isNatIList(X)
nil → n__nil
isNatList(X) → n__isNatList(X)
isNat(X) → n__isNat(X)
and(X1, X2) → n__and(X1, X2)
activate(n__zeros) → zeros
activate(n__take(X1, X2)) → take(activate(X1), activate(X2))
activate(n__0) → 0
activate(n__length(X)) → length(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(n__isNatIList(X)) → isNatIList(X)
activate(n__nil) → nil
activate(n__isNatList(X)) → isNatList(X)
activate(n__isNat(X)) → isNat(X)
activate(n__and(X1, X2)) → and(activate(X1), X2)
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 1 SCC with 1 less node.
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
ISNATLIST(n__cons(n__take(x0, x1), y1)) → AND(isNat(take(activate(x0), activate(x1))), n__isNatList(activate(y1)))
ISNAT(n__s(n__s(x0))) → ISNAT(s(activate(x0)))
ACTIVATE(n__and(n__isNatList(x0), y1)) → AND(isNatList(x0), y1)
ISNATLIST(n__cons(n__and(x0, x1), y1)) → AND(isNat(and(activate(x0), x1)), n__isNatList(activate(y1)))
ISNATLIST(n__cons(x0, y1)) → AND(isNat(x0), n__isNatList(activate(y1)))
ISNATLIST(n__cons(n__0, y1)) → AND(isNat(0), n__isNatList(activate(y1)))
ISNATILIST(n__cons(n__cons(x0, x1), y1)) → AND(isNat(cons(activate(x0), x1)), n__isNatIList(activate(y1)))
ACTIVATE(n__s(X)) → ACTIVATE(X)
ISNATLIST(n__cons(n__isNatList(x0), y1)) → AND(isNat(isNatList(x0)), n__isNatList(activate(y1)))
ISNATLIST(n__cons(n__s(x0), y1)) → AND(isNat(s(activate(x0))), n__isNatList(activate(y1)))
ACTIVATE(n__and(n__take(x0, x1), y1)) → AND(take(activate(x0), activate(x1)), y1)
ISNAT(n__s(n__isNat(x0))) → ISNAT(isNat(x0))
ISNAT(n__s(n__0)) → ISNAT(0)
ISNATILIST(n__cons(n__length(x0), y1)) → AND(isNat(length(activate(x0))), n__isNatIList(activate(y1)))
ACTIVATE(n__and(n__s(x0), y1)) → AND(s(activate(x0)), y1)
AND(tt, X) → ACTIVATE(X)
ISNATILIST(n__cons(n__nil, y1)) → AND(isNat(nil), n__isNatIList(activate(y1)))
ISNAT(n__s(V1)) → ACTIVATE(V1)
ISNATILIST(n__cons(n__s(x0), y1)) → AND(isNat(s(activate(x0))), n__isNatIList(activate(y1)))
ISNAT(n__s(n__zeros)) → ISNAT(zeros)
ISNATILIST(n__cons(n__isNatIList(x0), y1)) → AND(isNat(isNatIList(x0)), n__isNatIList(activate(y1)))
ACTIVATE(n__and(x0, y1)) → AND(x0, y1)
ISNATILIST(n__cons(n__zeros, y1)) → AND(isNat(zeros), n__isNatIList(activate(y1)))
ISNATILIST(n__cons(x0, y1)) → AND(isNat(x0), n__isNatIList(activate(y1)))
ISNATILIST(n__cons(n__isNat(x0), y1)) → AND(isNat(isNat(x0)), n__isNatIList(activate(y1)))
ISNAT(n__s(n__and(x0, x1))) → ISNAT(and(activate(x0), x1))
ISNAT(n__s(n__take(x0, x1))) → ISNAT(take(activate(x0), activate(x1)))
ACTIVATE(n__isNatIList(X)) → ISNATILIST(X)
ISNAT(n__s(n__length(x0))) → ISNAT(length(activate(x0)))
ISNATLIST(n__cons(n__length(x0), y1)) → AND(isNat(length(activate(x0))), n__isNatList(activate(y1)))
ISNATILIST(n__cons(n__take(x0, x1), y1)) → AND(isNat(take(activate(x0), activate(x1))), n__isNatIList(activate(y1)))
ISNATILIST(n__cons(n__isNatList(x0), y1)) → AND(isNat(isNatList(x0)), n__isNatIList(activate(y1)))
ACTIVATE(n__and(n__length(x0), y1)) → AND(length(activate(x0)), y1)
ISNAT(n__s(n__nil)) → ISNAT(nil)
ACTIVATE(n__and(n__and(x0, x1), y1)) → AND(and(activate(x0), x1), y1)
ACTIVATE(n__and(X1, X2)) → ACTIVATE(X1)
ACTIVATE(n__isNatList(X)) → ISNATLIST(X)
ISNATLIST(n__cons(n__isNatIList(x0), y1)) → AND(isNat(isNatIList(x0)), n__isNatList(activate(y1)))
ACTIVATE(n__and(n__isNat(x0), y1)) → AND(isNat(x0), y1)
ISNATILIST(n__cons(n__and(x0, x1), y1)) → AND(isNat(and(activate(x0), x1)), n__isNatIList(activate(y1)))
ISNATLIST(n__cons(n__isNat(x0), y1)) → AND(isNat(isNat(x0)), n__isNatList(activate(y1)))
ACTIVATE(n__and(n__cons(x0, x1), y1)) → AND(cons(activate(x0), x1), y1)
ISNAT(n__s(n__isNatIList(x0))) → ISNAT(isNatIList(x0))
ISNAT(n__s(n__cons(x0, x1))) → ISNAT(cons(activate(x0), x1))
ISNAT(n__s(n__isNatList(x0))) → ISNAT(isNatList(x0))
ISNATLIST(n__cons(n__cons(x0, x1), y1)) → AND(isNat(cons(activate(x0), x1)), n__isNatList(activate(y1)))
ACTIVATE(n__and(n__zeros, y0)) → AND(cons(n__0, n__zeros), y0)
ACTIVATE(n__isNat(X)) → ISNAT(X)
ISNATLIST(n__cons(n__nil, y1)) → AND(isNat(nil), n__isNatList(activate(y1)))
ISNATILIST(n__cons(n__0, y1)) → AND(isNat(0), n__isNatIList(activate(y1)))
ISNAT(n__s(x0)) → ISNAT(x0)
ACTIVATE(n__and(n__isNatIList(x0), y1)) → AND(isNatIList(x0), y1)
ISNATLIST(n__cons(n__zeros, y1)) → AND(isNat(zeros), n__isNatList(activate(y1)))
The TRS R consists of the following rules:
zeros → cons(0, n__zeros)
U11(tt, L) → s(length(activate(L)))
U21(tt) → nil
U31(tt, IL, M, N) → cons(activate(N), n__take(activate(M), activate(IL)))
and(tt, X) → activate(X)
isNat(n__0) → tt
isNat(n__length(V1)) → isNatList(activate(V1))
isNat(n__s(V1)) → isNat(activate(V1))
isNatIList(V) → isNatList(activate(V))
isNatIList(n__zeros) → tt
isNatIList(n__cons(V1, V2)) → and(isNat(activate(V1)), n__isNatIList(activate(V2)))
isNatList(n__nil) → tt
isNatList(n__cons(V1, V2)) → and(isNat(activate(V1)), n__isNatList(activate(V2)))
isNatList(n__take(V1, V2)) → and(isNat(activate(V1)), n__isNatIList(activate(V2)))
length(nil) → 0
length(cons(N, L)) → U11(and(isNatList(activate(L)), n__isNat(N)), activate(L))
take(0, IL) → U21(isNatIList(IL))
take(s(M), cons(N, IL)) → U31(and(isNatIList(activate(IL)), n__and(n__isNat(M), n__isNat(N))), activate(IL), M, N)
zeros → n__zeros
take(X1, X2) → n__take(X1, X2)
0 → n__0
length(X) → n__length(X)
s(X) → n__s(X)
cons(X1, X2) → n__cons(X1, X2)
isNatIList(X) → n__isNatIList(X)
nil → n__nil
isNatList(X) → n__isNatList(X)
isNat(X) → n__isNat(X)
and(X1, X2) → n__and(X1, X2)
activate(n__zeros) → zeros
activate(n__take(X1, X2)) → take(activate(X1), activate(X2))
activate(n__0) → 0
activate(n__length(X)) → length(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(n__isNatIList(X)) → isNatIList(X)
activate(n__nil) → nil
activate(n__isNatList(X)) → isNatList(X)
activate(n__isNat(X)) → isNat(X)
activate(n__and(X1, X2)) → and(activate(X1), X2)
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By narrowing [15] the rule ACTIVATE(n__and(n__zeros, y0)) → AND(cons(n__0, n__zeros), y0) at position [0] we obtained the following new rules:
ACTIVATE(n__and(n__zeros, y0)) → AND(n__cons(n__0, n__zeros), y0)
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
ISNAT(n__s(n__s(x0))) → ISNAT(s(activate(x0)))
ISNATLIST(n__cons(n__take(x0, x1), y1)) → AND(isNat(take(activate(x0), activate(x1))), n__isNatList(activate(y1)))
ACTIVATE(n__and(n__isNatList(x0), y1)) → AND(isNatList(x0), y1)
ISNATLIST(n__cons(n__and(x0, x1), y1)) → AND(isNat(and(activate(x0), x1)), n__isNatList(activate(y1)))
ISNATLIST(n__cons(x0, y1)) → AND(isNat(x0), n__isNatList(activate(y1)))
ISNATILIST(n__cons(n__cons(x0, x1), y1)) → AND(isNat(cons(activate(x0), x1)), n__isNatIList(activate(y1)))
ISNATLIST(n__cons(n__0, y1)) → AND(isNat(0), n__isNatList(activate(y1)))
ACTIVATE(n__s(X)) → ACTIVATE(X)
ISNATLIST(n__cons(n__isNatList(x0), y1)) → AND(isNat(isNatList(x0)), n__isNatList(activate(y1)))
ACTIVATE(n__and(n__zeros, y0)) → AND(n__cons(n__0, n__zeros), y0)
ISNATLIST(n__cons(n__s(x0), y1)) → AND(isNat(s(activate(x0))), n__isNatList(activate(y1)))
ACTIVATE(n__and(n__take(x0, x1), y1)) → AND(take(activate(x0), activate(x1)), y1)
ISNAT(n__s(n__0)) → ISNAT(0)
ISNAT(n__s(n__isNat(x0))) → ISNAT(isNat(x0))
ISNATILIST(n__cons(n__length(x0), y1)) → AND(isNat(length(activate(x0))), n__isNatIList(activate(y1)))
ACTIVATE(n__and(n__s(x0), y1)) → AND(s(activate(x0)), y1)
ISNAT(n__s(V1)) → ACTIVATE(V1)
ISNATILIST(n__cons(n__nil, y1)) → AND(isNat(nil), n__isNatIList(activate(y1)))
AND(tt, X) → ACTIVATE(X)
ISNATILIST(n__cons(n__s(x0), y1)) → AND(isNat(s(activate(x0))), n__isNatIList(activate(y1)))
ISNATILIST(n__cons(n__isNatIList(x0), y1)) → AND(isNat(isNatIList(x0)), n__isNatIList(activate(y1)))
ISNAT(n__s(n__zeros)) → ISNAT(zeros)
ACTIVATE(n__and(x0, y1)) → AND(x0, y1)
ISNATILIST(n__cons(n__zeros, y1)) → AND(isNat(zeros), n__isNatIList(activate(y1)))
ISNATILIST(n__cons(x0, y1)) → AND(isNat(x0), n__isNatIList(activate(y1)))
ISNAT(n__s(n__take(x0, x1))) → ISNAT(take(activate(x0), activate(x1)))
ISNAT(n__s(n__and(x0, x1))) → ISNAT(and(activate(x0), x1))
ISNATILIST(n__cons(n__isNat(x0), y1)) → AND(isNat(isNat(x0)), n__isNatIList(activate(y1)))
ISNAT(n__s(n__length(x0))) → ISNAT(length(activate(x0)))
ACTIVATE(n__isNatIList(X)) → ISNATILIST(X)
ISNATILIST(n__cons(n__take(x0, x1), y1)) → AND(isNat(take(activate(x0), activate(x1))), n__isNatIList(activate(y1)))
ISNATLIST(n__cons(n__length(x0), y1)) → AND(isNat(length(activate(x0))), n__isNatList(activate(y1)))
ISNATILIST(n__cons(n__isNatList(x0), y1)) → AND(isNat(isNatList(x0)), n__isNatIList(activate(y1)))
ACTIVATE(n__and(n__length(x0), y1)) → AND(length(activate(x0)), y1)
ACTIVATE(n__and(n__and(x0, x1), y1)) → AND(and(activate(x0), x1), y1)
ISNAT(n__s(n__nil)) → ISNAT(nil)
ACTIVATE(n__and(X1, X2)) → ACTIVATE(X1)
ACTIVATE(n__isNatList(X)) → ISNATLIST(X)
ACTIVATE(n__and(n__isNat(x0), y1)) → AND(isNat(x0), y1)
ISNATLIST(n__cons(n__isNatIList(x0), y1)) → AND(isNat(isNatIList(x0)), n__isNatList(activate(y1)))
ISNATILIST(n__cons(n__and(x0, x1), y1)) → AND(isNat(and(activate(x0), x1)), n__isNatIList(activate(y1)))
ISNATLIST(n__cons(n__isNat(x0), y1)) → AND(isNat(isNat(x0)), n__isNatList(activate(y1)))
ACTIVATE(n__and(n__cons(x0, x1), y1)) → AND(cons(activate(x0), x1), y1)
ISNAT(n__s(n__isNatIList(x0))) → ISNAT(isNatIList(x0))
ISNAT(n__s(n__cons(x0, x1))) → ISNAT(cons(activate(x0), x1))
ISNAT(n__s(n__isNatList(x0))) → ISNAT(isNatList(x0))
ISNATLIST(n__cons(n__cons(x0, x1), y1)) → AND(isNat(cons(activate(x0), x1)), n__isNatList(activate(y1)))
ACTIVATE(n__isNat(X)) → ISNAT(X)
ISNATILIST(n__cons(n__0, y1)) → AND(isNat(0), n__isNatIList(activate(y1)))
ISNATLIST(n__cons(n__nil, y1)) → AND(isNat(nil), n__isNatList(activate(y1)))
ACTIVATE(n__and(n__isNatIList(x0), y1)) → AND(isNatIList(x0), y1)
ISNAT(n__s(x0)) → ISNAT(x0)
ISNATLIST(n__cons(n__zeros, y1)) → AND(isNat(zeros), n__isNatList(activate(y1)))
The TRS R consists of the following rules:
zeros → cons(0, n__zeros)
U11(tt, L) → s(length(activate(L)))
U21(tt) → nil
U31(tt, IL, M, N) → cons(activate(N), n__take(activate(M), activate(IL)))
and(tt, X) → activate(X)
isNat(n__0) → tt
isNat(n__length(V1)) → isNatList(activate(V1))
isNat(n__s(V1)) → isNat(activate(V1))
isNatIList(V) → isNatList(activate(V))
isNatIList(n__zeros) → tt
isNatIList(n__cons(V1, V2)) → and(isNat(activate(V1)), n__isNatIList(activate(V2)))
isNatList(n__nil) → tt
isNatList(n__cons(V1, V2)) → and(isNat(activate(V1)), n__isNatList(activate(V2)))
isNatList(n__take(V1, V2)) → and(isNat(activate(V1)), n__isNatIList(activate(V2)))
length(nil) → 0
length(cons(N, L)) → U11(and(isNatList(activate(L)), n__isNat(N)), activate(L))
take(0, IL) → U21(isNatIList(IL))
take(s(M), cons(N, IL)) → U31(and(isNatIList(activate(IL)), n__and(n__isNat(M), n__isNat(N))), activate(IL), M, N)
zeros → n__zeros
take(X1, X2) → n__take(X1, X2)
0 → n__0
length(X) → n__length(X)
s(X) → n__s(X)
cons(X1, X2) → n__cons(X1, X2)
isNatIList(X) → n__isNatIList(X)
nil → n__nil
isNatList(X) → n__isNatList(X)
isNat(X) → n__isNat(X)
and(X1, X2) → n__and(X1, X2)
activate(n__zeros) → zeros
activate(n__take(X1, X2)) → take(activate(X1), activate(X2))
activate(n__0) → 0
activate(n__length(X)) → length(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(n__isNatIList(X)) → isNatIList(X)
activate(n__nil) → nil
activate(n__isNatList(X)) → isNatList(X)
activate(n__isNat(X)) → isNat(X)
activate(n__and(X1, X2)) → and(activate(X1), X2)
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 1 SCC with 1 less node.
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
ISNATLIST(n__cons(n__take(x0, x1), y1)) → AND(isNat(take(activate(x0), activate(x1))), n__isNatList(activate(y1)))
ISNAT(n__s(n__s(x0))) → ISNAT(s(activate(x0)))
ACTIVATE(n__and(n__isNatList(x0), y1)) → AND(isNatList(x0), y1)
ISNATLIST(n__cons(n__and(x0, x1), y1)) → AND(isNat(and(activate(x0), x1)), n__isNatList(activate(y1)))
ISNATLIST(n__cons(x0, y1)) → AND(isNat(x0), n__isNatList(activate(y1)))
ISNATLIST(n__cons(n__0, y1)) → AND(isNat(0), n__isNatList(activate(y1)))
ISNATILIST(n__cons(n__cons(x0, x1), y1)) → AND(isNat(cons(activate(x0), x1)), n__isNatIList(activate(y1)))
ACTIVATE(n__s(X)) → ACTIVATE(X)
ISNATLIST(n__cons(n__isNatList(x0), y1)) → AND(isNat(isNatList(x0)), n__isNatList(activate(y1)))
ISNATLIST(n__cons(n__s(x0), y1)) → AND(isNat(s(activate(x0))), n__isNatList(activate(y1)))
ACTIVATE(n__and(n__take(x0, x1), y1)) → AND(take(activate(x0), activate(x1)), y1)
ISNAT(n__s(n__isNat(x0))) → ISNAT(isNat(x0))
ISNAT(n__s(n__0)) → ISNAT(0)
ISNATILIST(n__cons(n__length(x0), y1)) → AND(isNat(length(activate(x0))), n__isNatIList(activate(y1)))
ACTIVATE(n__and(n__s(x0), y1)) → AND(s(activate(x0)), y1)
ISNAT(n__s(V1)) → ACTIVATE(V1)
AND(tt, X) → ACTIVATE(X)
ISNATILIST(n__cons(n__nil, y1)) → AND(isNat(nil), n__isNatIList(activate(y1)))
ISNATILIST(n__cons(n__s(x0), y1)) → AND(isNat(s(activate(x0))), n__isNatIList(activate(y1)))
ISNAT(n__s(n__zeros)) → ISNAT(zeros)
ISNATILIST(n__cons(n__isNatIList(x0), y1)) → AND(isNat(isNatIList(x0)), n__isNatIList(activate(y1)))
ACTIVATE(n__and(x0, y1)) → AND(x0, y1)
ISNATILIST(n__cons(n__zeros, y1)) → AND(isNat(zeros), n__isNatIList(activate(y1)))
ISNATILIST(n__cons(x0, y1)) → AND(isNat(x0), n__isNatIList(activate(y1)))
ISNATILIST(n__cons(n__isNat(x0), y1)) → AND(isNat(isNat(x0)), n__isNatIList(activate(y1)))
ISNAT(n__s(n__and(x0, x1))) → ISNAT(and(activate(x0), x1))
ISNAT(n__s(n__take(x0, x1))) → ISNAT(take(activate(x0), activate(x1)))
ACTIVATE(n__isNatIList(X)) → ISNATILIST(X)
ISNAT(n__s(n__length(x0))) → ISNAT(length(activate(x0)))
ISNATILIST(n__cons(n__take(x0, x1), y1)) → AND(isNat(take(activate(x0), activate(x1))), n__isNatIList(activate(y1)))
ISNATLIST(n__cons(n__length(x0), y1)) → AND(isNat(length(activate(x0))), n__isNatList(activate(y1)))
ISNATILIST(n__cons(n__isNatList(x0), y1)) → AND(isNat(isNatList(x0)), n__isNatIList(activate(y1)))
ACTIVATE(n__and(n__length(x0), y1)) → AND(length(activate(x0)), y1)
ACTIVATE(n__and(n__and(x0, x1), y1)) → AND(and(activate(x0), x1), y1)
ISNAT(n__s(n__nil)) → ISNAT(nil)
ACTIVATE(n__and(X1, X2)) → ACTIVATE(X1)
ACTIVATE(n__isNatList(X)) → ISNATLIST(X)
ACTIVATE(n__and(n__isNat(x0), y1)) → AND(isNat(x0), y1)
ISNATLIST(n__cons(n__isNatIList(x0), y1)) → AND(isNat(isNatIList(x0)), n__isNatList(activate(y1)))
ISNATILIST(n__cons(n__and(x0, x1), y1)) → AND(isNat(and(activate(x0), x1)), n__isNatIList(activate(y1)))
ISNATLIST(n__cons(n__isNat(x0), y1)) → AND(isNat(isNat(x0)), n__isNatList(activate(y1)))
ACTIVATE(n__and(n__cons(x0, x1), y1)) → AND(cons(activate(x0), x1), y1)
ISNAT(n__s(n__isNatIList(x0))) → ISNAT(isNatIList(x0))
ISNAT(n__s(n__cons(x0, x1))) → ISNAT(cons(activate(x0), x1))
ISNAT(n__s(n__isNatList(x0))) → ISNAT(isNatList(x0))
ISNATLIST(n__cons(n__cons(x0, x1), y1)) → AND(isNat(cons(activate(x0), x1)), n__isNatList(activate(y1)))
ACTIVATE(n__isNat(X)) → ISNAT(X)
ISNATILIST(n__cons(n__0, y1)) → AND(isNat(0), n__isNatIList(activate(y1)))
ISNATLIST(n__cons(n__nil, y1)) → AND(isNat(nil), n__isNatList(activate(y1)))
ACTIVATE(n__and(n__isNatIList(x0), y1)) → AND(isNatIList(x0), y1)
ISNAT(n__s(x0)) → ISNAT(x0)
ISNATLIST(n__cons(n__zeros, y1)) → AND(isNat(zeros), n__isNatList(activate(y1)))
The TRS R consists of the following rules:
zeros → cons(0, n__zeros)
U11(tt, L) → s(length(activate(L)))
U21(tt) → nil
U31(tt, IL, M, N) → cons(activate(N), n__take(activate(M), activate(IL)))
and(tt, X) → activate(X)
isNat(n__0) → tt
isNat(n__length(V1)) → isNatList(activate(V1))
isNat(n__s(V1)) → isNat(activate(V1))
isNatIList(V) → isNatList(activate(V))
isNatIList(n__zeros) → tt
isNatIList(n__cons(V1, V2)) → and(isNat(activate(V1)), n__isNatIList(activate(V2)))
isNatList(n__nil) → tt
isNatList(n__cons(V1, V2)) → and(isNat(activate(V1)), n__isNatList(activate(V2)))
isNatList(n__take(V1, V2)) → and(isNat(activate(V1)), n__isNatIList(activate(V2)))
length(nil) → 0
length(cons(N, L)) → U11(and(isNatList(activate(L)), n__isNat(N)), activate(L))
take(0, IL) → U21(isNatIList(IL))
take(s(M), cons(N, IL)) → U31(and(isNatIList(activate(IL)), n__and(n__isNat(M), n__isNat(N))), activate(IL), M, N)
zeros → n__zeros
take(X1, X2) → n__take(X1, X2)
0 → n__0
length(X) → n__length(X)
s(X) → n__s(X)
cons(X1, X2) → n__cons(X1, X2)
isNatIList(X) → n__isNatIList(X)
nil → n__nil
isNatList(X) → n__isNatList(X)
isNat(X) → n__isNat(X)
and(X1, X2) → n__and(X1, X2)
activate(n__zeros) → zeros
activate(n__take(X1, X2)) → take(activate(X1), activate(X2))
activate(n__0) → 0
activate(n__length(X)) → length(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(n__isNatIList(X)) → isNatIList(X)
activate(n__nil) → nil
activate(n__isNatList(X)) → isNatList(X)
activate(n__isNat(X)) → isNat(X)
activate(n__and(X1, X2)) → and(activate(X1), X2)
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By narrowing [15] the rule ISNAT(n__s(n__0)) → ISNAT(0) at position [0] we obtained the following new rules:
ISNAT(n__s(n__0)) → ISNAT(n__0)
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
ISNAT(n__s(n__s(x0))) → ISNAT(s(activate(x0)))
ISNATLIST(n__cons(n__take(x0, x1), y1)) → AND(isNat(take(activate(x0), activate(x1))), n__isNatList(activate(y1)))
ACTIVATE(n__and(n__isNatList(x0), y1)) → AND(isNatList(x0), y1)
ISNATLIST(n__cons(n__and(x0, x1), y1)) → AND(isNat(and(activate(x0), x1)), n__isNatList(activate(y1)))
ISNATLIST(n__cons(x0, y1)) → AND(isNat(x0), n__isNatList(activate(y1)))
ISNATILIST(n__cons(n__cons(x0, x1), y1)) → AND(isNat(cons(activate(x0), x1)), n__isNatIList(activate(y1)))
ISNATLIST(n__cons(n__0, y1)) → AND(isNat(0), n__isNatList(activate(y1)))
ACTIVATE(n__s(X)) → ACTIVATE(X)
ISNATLIST(n__cons(n__isNatList(x0), y1)) → AND(isNat(isNatList(x0)), n__isNatList(activate(y1)))
ISNATLIST(n__cons(n__s(x0), y1)) → AND(isNat(s(activate(x0))), n__isNatList(activate(y1)))
ACTIVATE(n__and(n__take(x0, x1), y1)) → AND(take(activate(x0), activate(x1)), y1)
ISNAT(n__s(n__isNat(x0))) → ISNAT(isNat(x0))
ISNATILIST(n__cons(n__length(x0), y1)) → AND(isNat(length(activate(x0))), n__isNatIList(activate(y1)))
ACTIVATE(n__and(n__s(x0), y1)) → AND(s(activate(x0)), y1)
ISNATILIST(n__cons(n__nil, y1)) → AND(isNat(nil), n__isNatIList(activate(y1)))
AND(tt, X) → ACTIVATE(X)
ISNAT(n__s(V1)) → ACTIVATE(V1)
ISNATILIST(n__cons(n__s(x0), y1)) → AND(isNat(s(activate(x0))), n__isNatIList(activate(y1)))
ISNATILIST(n__cons(n__isNatIList(x0), y1)) → AND(isNat(isNatIList(x0)), n__isNatIList(activate(y1)))
ISNAT(n__s(n__zeros)) → ISNAT(zeros)
ACTIVATE(n__and(x0, y1)) → AND(x0, y1)
ISNATILIST(n__cons(n__zeros, y1)) → AND(isNat(zeros), n__isNatIList(activate(y1)))
ISNATILIST(n__cons(x0, y1)) → AND(isNat(x0), n__isNatIList(activate(y1)))
ISNAT(n__s(n__take(x0, x1))) → ISNAT(take(activate(x0), activate(x1)))
ISNAT(n__s(n__and(x0, x1))) → ISNAT(and(activate(x0), x1))
ISNATILIST(n__cons(n__isNat(x0), y1)) → AND(isNat(isNat(x0)), n__isNatIList(activate(y1)))
ISNAT(n__s(n__length(x0))) → ISNAT(length(activate(x0)))
ACTIVATE(n__isNatIList(X)) → ISNATILIST(X)
ISNATLIST(n__cons(n__length(x0), y1)) → AND(isNat(length(activate(x0))), n__isNatList(activate(y1)))
ISNATILIST(n__cons(n__take(x0, x1), y1)) → AND(isNat(take(activate(x0), activate(x1))), n__isNatIList(activate(y1)))
ISNATILIST(n__cons(n__isNatList(x0), y1)) → AND(isNat(isNatList(x0)), n__isNatIList(activate(y1)))
ACTIVATE(n__and(n__length(x0), y1)) → AND(length(activate(x0)), y1)
ISNAT(n__s(n__nil)) → ISNAT(nil)
ACTIVATE(n__and(n__and(x0, x1), y1)) → AND(and(activate(x0), x1), y1)
ACTIVATE(n__and(X1, X2)) → ACTIVATE(X1)
ACTIVATE(n__isNatList(X)) → ISNATLIST(X)
ISNATLIST(n__cons(n__isNatIList(x0), y1)) → AND(isNat(isNatIList(x0)), n__isNatList(activate(y1)))
ACTIVATE(n__and(n__isNat(x0), y1)) → AND(isNat(x0), y1)
ISNATILIST(n__cons(n__and(x0, x1), y1)) → AND(isNat(and(activate(x0), x1)), n__isNatIList(activate(y1)))
ISNATLIST(n__cons(n__isNat(x0), y1)) → AND(isNat(isNat(x0)), n__isNatList(activate(y1)))
ISNAT(n__s(n__0)) → ISNAT(n__0)
ACTIVATE(n__and(n__cons(x0, x1), y1)) → AND(cons(activate(x0), x1), y1)
ISNAT(n__s(n__isNatIList(x0))) → ISNAT(isNatIList(x0))
ISNAT(n__s(n__cons(x0, x1))) → ISNAT(cons(activate(x0), x1))
ISNAT(n__s(n__isNatList(x0))) → ISNAT(isNatList(x0))
ISNATLIST(n__cons(n__cons(x0, x1), y1)) → AND(isNat(cons(activate(x0), x1)), n__isNatList(activate(y1)))
ACTIVATE(n__isNat(X)) → ISNAT(X)
ISNATLIST(n__cons(n__nil, y1)) → AND(isNat(nil), n__isNatList(activate(y1)))
ISNATILIST(n__cons(n__0, y1)) → AND(isNat(0), n__isNatIList(activate(y1)))
ISNAT(n__s(x0)) → ISNAT(x0)
ACTIVATE(n__and(n__isNatIList(x0), y1)) → AND(isNatIList(x0), y1)
ISNATLIST(n__cons(n__zeros, y1)) → AND(isNat(zeros), n__isNatList(activate(y1)))
The TRS R consists of the following rules:
zeros → cons(0, n__zeros)
U11(tt, L) → s(length(activate(L)))
U21(tt) → nil
U31(tt, IL, M, N) → cons(activate(N), n__take(activate(M), activate(IL)))
and(tt, X) → activate(X)
isNat(n__0) → tt
isNat(n__length(V1)) → isNatList(activate(V1))
isNat(n__s(V1)) → isNat(activate(V1))
isNatIList(V) → isNatList(activate(V))
isNatIList(n__zeros) → tt
isNatIList(n__cons(V1, V2)) → and(isNat(activate(V1)), n__isNatIList(activate(V2)))
isNatList(n__nil) → tt
isNatList(n__cons(V1, V2)) → and(isNat(activate(V1)), n__isNatList(activate(V2)))
isNatList(n__take(V1, V2)) → and(isNat(activate(V1)), n__isNatIList(activate(V2)))
length(nil) → 0
length(cons(N, L)) → U11(and(isNatList(activate(L)), n__isNat(N)), activate(L))
take(0, IL) → U21(isNatIList(IL))
take(s(M), cons(N, IL)) → U31(and(isNatIList(activate(IL)), n__and(n__isNat(M), n__isNat(N))), activate(IL), M, N)
zeros → n__zeros
take(X1, X2) → n__take(X1, X2)
0 → n__0
length(X) → n__length(X)
s(X) → n__s(X)
cons(X1, X2) → n__cons(X1, X2)
isNatIList(X) → n__isNatIList(X)
nil → n__nil
isNatList(X) → n__isNatList(X)
isNat(X) → n__isNat(X)
and(X1, X2) → n__and(X1, X2)
activate(n__zeros) → zeros
activate(n__take(X1, X2)) → take(activate(X1), activate(X2))
activate(n__0) → 0
activate(n__length(X)) → length(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(n__isNatIList(X)) → isNatIList(X)
activate(n__nil) → nil
activate(n__isNatList(X)) → isNatList(X)
activate(n__isNat(X)) → isNat(X)
activate(n__and(X1, X2)) → and(activate(X1), X2)
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 1 SCC with 1 less node.
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
ISNATLIST(n__cons(n__take(x0, x1), y1)) → AND(isNat(take(activate(x0), activate(x1))), n__isNatList(activate(y1)))
ISNAT(n__s(n__s(x0))) → ISNAT(s(activate(x0)))
ACTIVATE(n__and(n__isNatList(x0), y1)) → AND(isNatList(x0), y1)
ISNATLIST(n__cons(n__and(x0, x1), y1)) → AND(isNat(and(activate(x0), x1)), n__isNatList(activate(y1)))
ISNATLIST(n__cons(x0, y1)) → AND(isNat(x0), n__isNatList(activate(y1)))
ISNATLIST(n__cons(n__0, y1)) → AND(isNat(0), n__isNatList(activate(y1)))
ISNATILIST(n__cons(n__cons(x0, x1), y1)) → AND(isNat(cons(activate(x0), x1)), n__isNatIList(activate(y1)))
ACTIVATE(n__s(X)) → ACTIVATE(X)
ISNATLIST(n__cons(n__isNatList(x0), y1)) → AND(isNat(isNatList(x0)), n__isNatList(activate(y1)))
ISNATLIST(n__cons(n__s(x0), y1)) → AND(isNat(s(activate(x0))), n__isNatList(activate(y1)))
ACTIVATE(n__and(n__take(x0, x1), y1)) → AND(take(activate(x0), activate(x1)), y1)
ISNAT(n__s(n__isNat(x0))) → ISNAT(isNat(x0))
ISNATILIST(n__cons(n__length(x0), y1)) → AND(isNat(length(activate(x0))), n__isNatIList(activate(y1)))
ACTIVATE(n__and(n__s(x0), y1)) → AND(s(activate(x0)), y1)
ISNAT(n__s(V1)) → ACTIVATE(V1)
AND(tt, X) → ACTIVATE(X)
ISNATILIST(n__cons(n__nil, y1)) → AND(isNat(nil), n__isNatIList(activate(y1)))
ISNATILIST(n__cons(n__s(x0), y1)) → AND(isNat(s(activate(x0))), n__isNatIList(activate(y1)))
ISNAT(n__s(n__zeros)) → ISNAT(zeros)
ISNATILIST(n__cons(n__isNatIList(x0), y1)) → AND(isNat(isNatIList(x0)), n__isNatIList(activate(y1)))
ACTIVATE(n__and(x0, y1)) → AND(x0, y1)
ISNATILIST(n__cons(n__zeros, y1)) → AND(isNat(zeros), n__isNatIList(activate(y1)))
ISNATILIST(n__cons(x0, y1)) → AND(isNat(x0), n__isNatIList(activate(y1)))
ISNAT(n__s(n__and(x0, x1))) → ISNAT(and(activate(x0), x1))
ISNAT(n__s(n__take(x0, x1))) → ISNAT(take(activate(x0), activate(x1)))
ISNATILIST(n__cons(n__isNat(x0), y1)) → AND(isNat(isNat(x0)), n__isNatIList(activate(y1)))
ACTIVATE(n__isNatIList(X)) → ISNATILIST(X)
ISNAT(n__s(n__length(x0))) → ISNAT(length(activate(x0)))
ISNATILIST(n__cons(n__take(x0, x1), y1)) → AND(isNat(take(activate(x0), activate(x1))), n__isNatIList(activate(y1)))
ISNATLIST(n__cons(n__length(x0), y1)) → AND(isNat(length(activate(x0))), n__isNatList(activate(y1)))
ISNATILIST(n__cons(n__isNatList(x0), y1)) → AND(isNat(isNatList(x0)), n__isNatIList(activate(y1)))
ACTIVATE(n__and(n__length(x0), y1)) → AND(length(activate(x0)), y1)
ACTIVATE(n__and(n__and(x0, x1), y1)) → AND(and(activate(x0), x1), y1)
ISNAT(n__s(n__nil)) → ISNAT(nil)
ACTIVATE(n__and(X1, X2)) → ACTIVATE(X1)
ACTIVATE(n__isNatList(X)) → ISNATLIST(X)
ACTIVATE(n__and(n__isNat(x0), y1)) → AND(isNat(x0), y1)
ISNATLIST(n__cons(n__isNatIList(x0), y1)) → AND(isNat(isNatIList(x0)), n__isNatList(activate(y1)))
ISNATILIST(n__cons(n__and(x0, x1), y1)) → AND(isNat(and(activate(x0), x1)), n__isNatIList(activate(y1)))
ISNATLIST(n__cons(n__isNat(x0), y1)) → AND(isNat(isNat(x0)), n__isNatList(activate(y1)))
ACTIVATE(n__and(n__cons(x0, x1), y1)) → AND(cons(activate(x0), x1), y1)
ISNAT(n__s(n__isNatIList(x0))) → ISNAT(isNatIList(x0))
ISNAT(n__s(n__cons(x0, x1))) → ISNAT(cons(activate(x0), x1))
ISNAT(n__s(n__isNatList(x0))) → ISNAT(isNatList(x0))
ISNATLIST(n__cons(n__cons(x0, x1), y1)) → AND(isNat(cons(activate(x0), x1)), n__isNatList(activate(y1)))
ACTIVATE(n__isNat(X)) → ISNAT(X)
ISNATILIST(n__cons(n__0, y1)) → AND(isNat(0), n__isNatIList(activate(y1)))
ISNATLIST(n__cons(n__nil, y1)) → AND(isNat(nil), n__isNatList(activate(y1)))
ACTIVATE(n__and(n__isNatIList(x0), y1)) → AND(isNatIList(x0), y1)
ISNAT(n__s(x0)) → ISNAT(x0)
ISNATLIST(n__cons(n__zeros, y1)) → AND(isNat(zeros), n__isNatList(activate(y1)))
The TRS R consists of the following rules:
zeros → cons(0, n__zeros)
U11(tt, L) → s(length(activate(L)))
U21(tt) → nil
U31(tt, IL, M, N) → cons(activate(N), n__take(activate(M), activate(IL)))
and(tt, X) → activate(X)
isNat(n__0) → tt
isNat(n__length(V1)) → isNatList(activate(V1))
isNat(n__s(V1)) → isNat(activate(V1))
isNatIList(V) → isNatList(activate(V))
isNatIList(n__zeros) → tt
isNatIList(n__cons(V1, V2)) → and(isNat(activate(V1)), n__isNatIList(activate(V2)))
isNatList(n__nil) → tt
isNatList(n__cons(V1, V2)) → and(isNat(activate(V1)), n__isNatList(activate(V2)))
isNatList(n__take(V1, V2)) → and(isNat(activate(V1)), n__isNatIList(activate(V2)))
length(nil) → 0
length(cons(N, L)) → U11(and(isNatList(activate(L)), n__isNat(N)), activate(L))
take(0, IL) → U21(isNatIList(IL))
take(s(M), cons(N, IL)) → U31(and(isNatIList(activate(IL)), n__and(n__isNat(M), n__isNat(N))), activate(IL), M, N)
zeros → n__zeros
take(X1, X2) → n__take(X1, X2)
0 → n__0
length(X) → n__length(X)
s(X) → n__s(X)
cons(X1, X2) → n__cons(X1, X2)
isNatIList(X) → n__isNatIList(X)
nil → n__nil
isNatList(X) → n__isNatList(X)
isNat(X) → n__isNat(X)
and(X1, X2) → n__and(X1, X2)
activate(n__zeros) → zeros
activate(n__take(X1, X2)) → take(activate(X1), activate(X2))
activate(n__0) → 0
activate(n__length(X)) → length(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(n__isNatIList(X)) → isNatIList(X)
activate(n__nil) → nil
activate(n__isNatList(X)) → isNatList(X)
activate(n__isNat(X)) → isNat(X)
activate(n__and(X1, X2)) → and(activate(X1), X2)
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By narrowing [15] the rule ISNAT(n__s(n__nil)) → ISNAT(nil) at position [0] we obtained the following new rules:
ISNAT(n__s(n__nil)) → ISNAT(n__nil)
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
ISNAT(n__s(n__s(x0))) → ISNAT(s(activate(x0)))
ISNATLIST(n__cons(n__take(x0, x1), y1)) → AND(isNat(take(activate(x0), activate(x1))), n__isNatList(activate(y1)))
ACTIVATE(n__and(n__isNatList(x0), y1)) → AND(isNatList(x0), y1)
ISNATLIST(n__cons(n__and(x0, x1), y1)) → AND(isNat(and(activate(x0), x1)), n__isNatList(activate(y1)))
ISNATLIST(n__cons(x0, y1)) → AND(isNat(x0), n__isNatList(activate(y1)))
ISNATILIST(n__cons(n__cons(x0, x1), y1)) → AND(isNat(cons(activate(x0), x1)), n__isNatIList(activate(y1)))
ISNATLIST(n__cons(n__0, y1)) → AND(isNat(0), n__isNatList(activate(y1)))
ACTIVATE(n__s(X)) → ACTIVATE(X)
ISNATLIST(n__cons(n__isNatList(x0), y1)) → AND(isNat(isNatList(x0)), n__isNatList(activate(y1)))
ISNATLIST(n__cons(n__s(x0), y1)) → AND(isNat(s(activate(x0))), n__isNatList(activate(y1)))
ISNAT(n__s(n__nil)) → ISNAT(n__nil)
ACTIVATE(n__and(n__take(x0, x1), y1)) → AND(take(activate(x0), activate(x1)), y1)
ISNAT(n__s(n__isNat(x0))) → ISNAT(isNat(x0))
ISNATILIST(n__cons(n__length(x0), y1)) → AND(isNat(length(activate(x0))), n__isNatIList(activate(y1)))
ACTIVATE(n__and(n__s(x0), y1)) → AND(s(activate(x0)), y1)
ISNATILIST(n__cons(n__nil, y1)) → AND(isNat(nil), n__isNatIList(activate(y1)))
AND(tt, X) → ACTIVATE(X)
ISNAT(n__s(V1)) → ACTIVATE(V1)
ISNATILIST(n__cons(n__s(x0), y1)) → AND(isNat(s(activate(x0))), n__isNatIList(activate(y1)))
ISNATILIST(n__cons(n__isNatIList(x0), y1)) → AND(isNat(isNatIList(x0)), n__isNatIList(activate(y1)))
ISNAT(n__s(n__zeros)) → ISNAT(zeros)
ACTIVATE(n__and(x0, y1)) → AND(x0, y1)
ISNATILIST(n__cons(n__zeros, y1)) → AND(isNat(zeros), n__isNatIList(activate(y1)))
ISNATILIST(n__cons(x0, y1)) → AND(isNat(x0), n__isNatIList(activate(y1)))
ISNATILIST(n__cons(n__isNat(x0), y1)) → AND(isNat(isNat(x0)), n__isNatIList(activate(y1)))
ISNAT(n__s(n__take(x0, x1))) → ISNAT(take(activate(x0), activate(x1)))
ISNAT(n__s(n__and(x0, x1))) → ISNAT(and(activate(x0), x1))
ISNAT(n__s(n__length(x0))) → ISNAT(length(activate(x0)))
ACTIVATE(n__isNatIList(X)) → ISNATILIST(X)
ISNATLIST(n__cons(n__length(x0), y1)) → AND(isNat(length(activate(x0))), n__isNatList(activate(y1)))
ISNATILIST(n__cons(n__take(x0, x1), y1)) → AND(isNat(take(activate(x0), activate(x1))), n__isNatIList(activate(y1)))
ISNATILIST(n__cons(n__isNatList(x0), y1)) → AND(isNat(isNatList(x0)), n__isNatIList(activate(y1)))
ACTIVATE(n__and(n__length(x0), y1)) → AND(length(activate(x0)), y1)
ACTIVATE(n__and(n__and(x0, x1), y1)) → AND(and(activate(x0), x1), y1)
ACTIVATE(n__and(X1, X2)) → ACTIVATE(X1)
ACTIVATE(n__isNatList(X)) → ISNATLIST(X)
ISNATLIST(n__cons(n__isNatIList(x0), y1)) → AND(isNat(isNatIList(x0)), n__isNatList(activate(y1)))
ACTIVATE(n__and(n__isNat(x0), y1)) → AND(isNat(x0), y1)
ISNATILIST(n__cons(n__and(x0, x1), y1)) → AND(isNat(and(activate(x0), x1)), n__isNatIList(activate(y1)))
ISNATLIST(n__cons(n__isNat(x0), y1)) → AND(isNat(isNat(x0)), n__isNatList(activate(y1)))
ACTIVATE(n__and(n__cons(x0, x1), y1)) → AND(cons(activate(x0), x1), y1)
ISNAT(n__s(n__isNatIList(x0))) → ISNAT(isNatIList(x0))
ISNAT(n__s(n__cons(x0, x1))) → ISNAT(cons(activate(x0), x1))
ISNAT(n__s(n__isNatList(x0))) → ISNAT(isNatList(x0))
ISNATLIST(n__cons(n__cons(x0, x1), y1)) → AND(isNat(cons(activate(x0), x1)), n__isNatList(activate(y1)))
ACTIVATE(n__isNat(X)) → ISNAT(X)
ISNATLIST(n__cons(n__nil, y1)) → AND(isNat(nil), n__isNatList(activate(y1)))
ISNATILIST(n__cons(n__0, y1)) → AND(isNat(0), n__isNatIList(activate(y1)))
ISNAT(n__s(x0)) → ISNAT(x0)
ACTIVATE(n__and(n__isNatIList(x0), y1)) → AND(isNatIList(x0), y1)
ISNATLIST(n__cons(n__zeros, y1)) → AND(isNat(zeros), n__isNatList(activate(y1)))
The TRS R consists of the following rules:
zeros → cons(0, n__zeros)
U11(tt, L) → s(length(activate(L)))
U21(tt) → nil
U31(tt, IL, M, N) → cons(activate(N), n__take(activate(M), activate(IL)))
and(tt, X) → activate(X)
isNat(n__0) → tt
isNat(n__length(V1)) → isNatList(activate(V1))
isNat(n__s(V1)) → isNat(activate(V1))
isNatIList(V) → isNatList(activate(V))
isNatIList(n__zeros) → tt
isNatIList(n__cons(V1, V2)) → and(isNat(activate(V1)), n__isNatIList(activate(V2)))
isNatList(n__nil) → tt
isNatList(n__cons(V1, V2)) → and(isNat(activate(V1)), n__isNatList(activate(V2)))
isNatList(n__take(V1, V2)) → and(isNat(activate(V1)), n__isNatIList(activate(V2)))
length(nil) → 0
length(cons(N, L)) → U11(and(isNatList(activate(L)), n__isNat(N)), activate(L))
take(0, IL) → U21(isNatIList(IL))
take(s(M), cons(N, IL)) → U31(and(isNatIList(activate(IL)), n__and(n__isNat(M), n__isNat(N))), activate(IL), M, N)
zeros → n__zeros
take(X1, X2) → n__take(X1, X2)
0 → n__0
length(X) → n__length(X)
s(X) → n__s(X)
cons(X1, X2) → n__cons(X1, X2)
isNatIList(X) → n__isNatIList(X)
nil → n__nil
isNatList(X) → n__isNatList(X)
isNat(X) → n__isNat(X)
and(X1, X2) → n__and(X1, X2)
activate(n__zeros) → zeros
activate(n__take(X1, X2)) → take(activate(X1), activate(X2))
activate(n__0) → 0
activate(n__length(X)) → length(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(n__isNatIList(X)) → isNatIList(X)
activate(n__nil) → nil
activate(n__isNatList(X)) → isNatList(X)
activate(n__isNat(X)) → isNat(X)
activate(n__and(X1, X2)) → and(activate(X1), X2)
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 1 SCC with 1 less node.
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
ISNATLIST(n__cons(n__take(x0, x1), y1)) → AND(isNat(take(activate(x0), activate(x1))), n__isNatList(activate(y1)))
ISNAT(n__s(n__s(x0))) → ISNAT(s(activate(x0)))
ACTIVATE(n__and(n__isNatList(x0), y1)) → AND(isNatList(x0), y1)
ISNATLIST(n__cons(n__and(x0, x1), y1)) → AND(isNat(and(activate(x0), x1)), n__isNatList(activate(y1)))
ISNATLIST(n__cons(x0, y1)) → AND(isNat(x0), n__isNatList(activate(y1)))
ISNATLIST(n__cons(n__0, y1)) → AND(isNat(0), n__isNatList(activate(y1)))
ISNATILIST(n__cons(n__cons(x0, x1), y1)) → AND(isNat(cons(activate(x0), x1)), n__isNatIList(activate(y1)))
ACTIVATE(n__s(X)) → ACTIVATE(X)
ISNATLIST(n__cons(n__isNatList(x0), y1)) → AND(isNat(isNatList(x0)), n__isNatList(activate(y1)))
ISNATLIST(n__cons(n__s(x0), y1)) → AND(isNat(s(activate(x0))), n__isNatList(activate(y1)))
ACTIVATE(n__and(n__take(x0, x1), y1)) → AND(take(activate(x0), activate(x1)), y1)
ISNAT(n__s(n__isNat(x0))) → ISNAT(isNat(x0))
ISNATILIST(n__cons(n__length(x0), y1)) → AND(isNat(length(activate(x0))), n__isNatIList(activate(y1)))
ACTIVATE(n__and(n__s(x0), y1)) → AND(s(activate(x0)), y1)
AND(tt, X) → ACTIVATE(X)
ISNATILIST(n__cons(n__nil, y1)) → AND(isNat(nil), n__isNatIList(activate(y1)))
ISNAT(n__s(V1)) → ACTIVATE(V1)
ISNATILIST(n__cons(n__s(x0), y1)) → AND(isNat(s(activate(x0))), n__isNatIList(activate(y1)))
ISNAT(n__s(n__zeros)) → ISNAT(zeros)
ISNATILIST(n__cons(n__isNatIList(x0), y1)) → AND(isNat(isNatIList(x0)), n__isNatIList(activate(y1)))
ACTIVATE(n__and(x0, y1)) → AND(x0, y1)
ISNATILIST(n__cons(n__zeros, y1)) → AND(isNat(zeros), n__isNatIList(activate(y1)))
ISNATILIST(n__cons(x0, y1)) → AND(isNat(x0), n__isNatIList(activate(y1)))
ISNATILIST(n__cons(n__isNat(x0), y1)) → AND(isNat(isNat(x0)), n__isNatIList(activate(y1)))
ISNAT(n__s(n__and(x0, x1))) → ISNAT(and(activate(x0), x1))
ISNAT(n__s(n__take(x0, x1))) → ISNAT(take(activate(x0), activate(x1)))
ACTIVATE(n__isNatIList(X)) → ISNATILIST(X)
ISNAT(n__s(n__length(x0))) → ISNAT(length(activate(x0)))
ISNATLIST(n__cons(n__length(x0), y1)) → AND(isNat(length(activate(x0))), n__isNatList(activate(y1)))
ISNATILIST(n__cons(n__take(x0, x1), y1)) → AND(isNat(take(activate(x0), activate(x1))), n__isNatIList(activate(y1)))
ISNATILIST(n__cons(n__isNatList(x0), y1)) → AND(isNat(isNatList(x0)), n__isNatIList(activate(y1)))
ACTIVATE(n__and(n__length(x0), y1)) → AND(length(activate(x0)), y1)
ACTIVATE(n__and(n__and(x0, x1), y1)) → AND(and(activate(x0), x1), y1)
ACTIVATE(n__and(X1, X2)) → ACTIVATE(X1)
ACTIVATE(n__isNatList(X)) → ISNATLIST(X)
ISNATLIST(n__cons(n__isNatIList(x0), y1)) → AND(isNat(isNatIList(x0)), n__isNatList(activate(y1)))
ACTIVATE(n__and(n__isNat(x0), y1)) → AND(isNat(x0), y1)
ISNATILIST(n__cons(n__and(x0, x1), y1)) → AND(isNat(and(activate(x0), x1)), n__isNatIList(activate(y1)))
ISNATLIST(n__cons(n__isNat(x0), y1)) → AND(isNat(isNat(x0)), n__isNatList(activate(y1)))
ACTIVATE(n__and(n__cons(x0, x1), y1)) → AND(cons(activate(x0), x1), y1)
ISNAT(n__s(n__isNatIList(x0))) → ISNAT(isNatIList(x0))
ISNAT(n__s(n__cons(x0, x1))) → ISNAT(cons(activate(x0), x1))
ISNAT(n__s(n__isNatList(x0))) → ISNAT(isNatList(x0))
ISNATLIST(n__cons(n__cons(x0, x1), y1)) → AND(isNat(cons(activate(x0), x1)), n__isNatList(activate(y1)))
ACTIVATE(n__isNat(X)) → ISNAT(X)
ISNATLIST(n__cons(n__nil, y1)) → AND(isNat(nil), n__isNatList(activate(y1)))
ISNATILIST(n__cons(n__0, y1)) → AND(isNat(0), n__isNatIList(activate(y1)))
ACTIVATE(n__and(n__isNatIList(x0), y1)) → AND(isNatIList(x0), y1)
ISNAT(n__s(x0)) → ISNAT(x0)
ISNATLIST(n__cons(n__zeros, y1)) → AND(isNat(zeros), n__isNatList(activate(y1)))
The TRS R consists of the following rules:
zeros → cons(0, n__zeros)
U11(tt, L) → s(length(activate(L)))
U21(tt) → nil
U31(tt, IL, M, N) → cons(activate(N), n__take(activate(M), activate(IL)))
and(tt, X) → activate(X)
isNat(n__0) → tt
isNat(n__length(V1)) → isNatList(activate(V1))
isNat(n__s(V1)) → isNat(activate(V1))
isNatIList(V) → isNatList(activate(V))
isNatIList(n__zeros) → tt
isNatIList(n__cons(V1, V2)) → and(isNat(activate(V1)), n__isNatIList(activate(V2)))
isNatList(n__nil) → tt
isNatList(n__cons(V1, V2)) → and(isNat(activate(V1)), n__isNatList(activate(V2)))
isNatList(n__take(V1, V2)) → and(isNat(activate(V1)), n__isNatIList(activate(V2)))
length(nil) → 0
length(cons(N, L)) → U11(and(isNatList(activate(L)), n__isNat(N)), activate(L))
take(0, IL) → U21(isNatIList(IL))
take(s(M), cons(N, IL)) → U31(and(isNatIList(activate(IL)), n__and(n__isNat(M), n__isNat(N))), activate(IL), M, N)
zeros → n__zeros
take(X1, X2) → n__take(X1, X2)
0 → n__0
length(X) → n__length(X)
s(X) → n__s(X)
cons(X1, X2) → n__cons(X1, X2)
isNatIList(X) → n__isNatIList(X)
nil → n__nil
isNatList(X) → n__isNatList(X)
isNat(X) → n__isNat(X)
and(X1, X2) → n__and(X1, X2)
activate(n__zeros) → zeros
activate(n__take(X1, X2)) → take(activate(X1), activate(X2))
activate(n__0) → 0
activate(n__length(X)) → length(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(n__isNatIList(X)) → isNatIList(X)
activate(n__nil) → nil
activate(n__isNatList(X)) → isNatList(X)
activate(n__isNat(X)) → isNat(X)
activate(n__and(X1, X2)) → and(activate(X1), X2)
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By narrowing [15] the rule ISNAT(n__s(n__zeros)) → ISNAT(zeros) at position [0] we obtained the following new rules:
ISNAT(n__s(n__zeros)) → ISNAT(cons(0, n__zeros))
ISNAT(n__s(n__zeros)) → ISNAT(n__zeros)
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
ISNAT(n__s(n__s(x0))) → ISNAT(s(activate(x0)))
ISNATLIST(n__cons(n__take(x0, x1), y1)) → AND(isNat(take(activate(x0), activate(x1))), n__isNatList(activate(y1)))
ACTIVATE(n__and(n__isNatList(x0), y1)) → AND(isNatList(x0), y1)
ISNATLIST(n__cons(n__and(x0, x1), y1)) → AND(isNat(and(activate(x0), x1)), n__isNatList(activate(y1)))
ISNATLIST(n__cons(x0, y1)) → AND(isNat(x0), n__isNatList(activate(y1)))
ISNATILIST(n__cons(n__cons(x0, x1), y1)) → AND(isNat(cons(activate(x0), x1)), n__isNatIList(activate(y1)))
ISNATLIST(n__cons(n__0, y1)) → AND(isNat(0), n__isNatList(activate(y1)))
ACTIVATE(n__s(X)) → ACTIVATE(X)
ISNATLIST(n__cons(n__isNatList(x0), y1)) → AND(isNat(isNatList(x0)), n__isNatList(activate(y1)))
ISNATLIST(n__cons(n__s(x0), y1)) → AND(isNat(s(activate(x0))), n__isNatList(activate(y1)))
ACTIVATE(n__and(n__take(x0, x1), y1)) → AND(take(activate(x0), activate(x1)), y1)
ISNAT(n__s(n__isNat(x0))) → ISNAT(isNat(x0))
ISNATILIST(n__cons(n__length(x0), y1)) → AND(isNat(length(activate(x0))), n__isNatIList(activate(y1)))
ACTIVATE(n__and(n__s(x0), y1)) → AND(s(activate(x0)), y1)
ISNAT(n__s(V1)) → ACTIVATE(V1)
ISNATILIST(n__cons(n__nil, y1)) → AND(isNat(nil), n__isNatIList(activate(y1)))
AND(tt, X) → ACTIVATE(X)
ISNATILIST(n__cons(n__s(x0), y1)) → AND(isNat(s(activate(x0))), n__isNatIList(activate(y1)))
ISNATILIST(n__cons(n__isNatIList(x0), y1)) → AND(isNat(isNatIList(x0)), n__isNatIList(activate(y1)))
ACTIVATE(n__and(x0, y1)) → AND(x0, y1)
ISNATILIST(n__cons(n__zeros, y1)) → AND(isNat(zeros), n__isNatIList(activate(y1)))
ISNATILIST(n__cons(x0, y1)) → AND(isNat(x0), n__isNatIList(activate(y1)))
ISNAT(n__s(n__take(x0, x1))) → ISNAT(take(activate(x0), activate(x1)))
ISNAT(n__s(n__and(x0, x1))) → ISNAT(and(activate(x0), x1))
ISNATILIST(n__cons(n__isNat(x0), y1)) → AND(isNat(isNat(x0)), n__isNatIList(activate(y1)))
ISNAT(n__s(n__length(x0))) → ISNAT(length(activate(x0)))
ACTIVATE(n__isNatIList(X)) → ISNATILIST(X)
ISNATILIST(n__cons(n__take(x0, x1), y1)) → AND(isNat(take(activate(x0), activate(x1))), n__isNatIList(activate(y1)))
ISNATLIST(n__cons(n__length(x0), y1)) → AND(isNat(length(activate(x0))), n__isNatList(activate(y1)))
ISNATILIST(n__cons(n__isNatList(x0), y1)) → AND(isNat(isNatList(x0)), n__isNatIList(activate(y1)))
ACTIVATE(n__and(n__length(x0), y1)) → AND(length(activate(x0)), y1)
ACTIVATE(n__and(n__and(x0, x1), y1)) → AND(and(activate(x0), x1), y1)
ACTIVATE(n__and(X1, X2)) → ACTIVATE(X1)
ISNAT(n__s(n__zeros)) → ISNAT(cons(0, n__zeros))
ACTIVATE(n__isNatList(X)) → ISNATLIST(X)
ACTIVATE(n__and(n__isNat(x0), y1)) → AND(isNat(x0), y1)
ISNATLIST(n__cons(n__isNatIList(x0), y1)) → AND(isNat(isNatIList(x0)), n__isNatList(activate(y1)))
ISNAT(n__s(n__zeros)) → ISNAT(n__zeros)
ISNATILIST(n__cons(n__and(x0, x1), y1)) → AND(isNat(and(activate(x0), x1)), n__isNatIList(activate(y1)))
ISNATLIST(n__cons(n__isNat(x0), y1)) → AND(isNat(isNat(x0)), n__isNatList(activate(y1)))
ACTIVATE(n__and(n__cons(x0, x1), y1)) → AND(cons(activate(x0), x1), y1)
ISNAT(n__s(n__isNatIList(x0))) → ISNAT(isNatIList(x0))
ISNAT(n__s(n__cons(x0, x1))) → ISNAT(cons(activate(x0), x1))
ISNAT(n__s(n__isNatList(x0))) → ISNAT(isNatList(x0))
ISNATLIST(n__cons(n__cons(x0, x1), y1)) → AND(isNat(cons(activate(x0), x1)), n__isNatList(activate(y1)))
ACTIVATE(n__isNat(X)) → ISNAT(X)
ISNATILIST(n__cons(n__0, y1)) → AND(isNat(0), n__isNatIList(activate(y1)))
ISNATLIST(n__cons(n__nil, y1)) → AND(isNat(nil), n__isNatList(activate(y1)))
ISNAT(n__s(x0)) → ISNAT(x0)
ACTIVATE(n__and(n__isNatIList(x0), y1)) → AND(isNatIList(x0), y1)
ISNATLIST(n__cons(n__zeros, y1)) → AND(isNat(zeros), n__isNatList(activate(y1)))
The TRS R consists of the following rules:
zeros → cons(0, n__zeros)
U11(tt, L) → s(length(activate(L)))
U21(tt) → nil
U31(tt, IL, M, N) → cons(activate(N), n__take(activate(M), activate(IL)))
and(tt, X) → activate(X)
isNat(n__0) → tt
isNat(n__length(V1)) → isNatList(activate(V1))
isNat(n__s(V1)) → isNat(activate(V1))
isNatIList(V) → isNatList(activate(V))
isNatIList(n__zeros) → tt
isNatIList(n__cons(V1, V2)) → and(isNat(activate(V1)), n__isNatIList(activate(V2)))
isNatList(n__nil) → tt
isNatList(n__cons(V1, V2)) → and(isNat(activate(V1)), n__isNatList(activate(V2)))
isNatList(n__take(V1, V2)) → and(isNat(activate(V1)), n__isNatIList(activate(V2)))
length(nil) → 0
length(cons(N, L)) → U11(and(isNatList(activate(L)), n__isNat(N)), activate(L))
take(0, IL) → U21(isNatIList(IL))
take(s(M), cons(N, IL)) → U31(and(isNatIList(activate(IL)), n__and(n__isNat(M), n__isNat(N))), activate(IL), M, N)
zeros → n__zeros
take(X1, X2) → n__take(X1, X2)
0 → n__0
length(X) → n__length(X)
s(X) → n__s(X)
cons(X1, X2) → n__cons(X1, X2)
isNatIList(X) → n__isNatIList(X)
nil → n__nil
isNatList(X) → n__isNatList(X)
isNat(X) → n__isNat(X)
and(X1, X2) → n__and(X1, X2)
activate(n__zeros) → zeros
activate(n__take(X1, X2)) → take(activate(X1), activate(X2))
activate(n__0) → 0
activate(n__length(X)) → length(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(n__isNatIList(X)) → isNatIList(X)
activate(n__nil) → nil
activate(n__isNatList(X)) → isNatList(X)
activate(n__isNat(X)) → isNat(X)
activate(n__and(X1, X2)) → and(activate(X1), X2)
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 1 SCC with 1 less node.
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
ISNATLIST(n__cons(n__take(x0, x1), y1)) → AND(isNat(take(activate(x0), activate(x1))), n__isNatList(activate(y1)))
ISNAT(n__s(n__s(x0))) → ISNAT(s(activate(x0)))
ACTIVATE(n__and(n__isNatList(x0), y1)) → AND(isNatList(x0), y1)
ISNATLIST(n__cons(n__and(x0, x1), y1)) → AND(isNat(and(activate(x0), x1)), n__isNatList(activate(y1)))
ISNATLIST(n__cons(x0, y1)) → AND(isNat(x0), n__isNatList(activate(y1)))
ISNATLIST(n__cons(n__0, y1)) → AND(isNat(0), n__isNatList(activate(y1)))
ISNATILIST(n__cons(n__cons(x0, x1), y1)) → AND(isNat(cons(activate(x0), x1)), n__isNatIList(activate(y1)))
ACTIVATE(n__s(X)) → ACTIVATE(X)
ISNATLIST(n__cons(n__isNatList(x0), y1)) → AND(isNat(isNatList(x0)), n__isNatList(activate(y1)))
ISNATLIST(n__cons(n__s(x0), y1)) → AND(isNat(s(activate(x0))), n__isNatList(activate(y1)))
ACTIVATE(n__and(n__take(x0, x1), y1)) → AND(take(activate(x0), activate(x1)), y1)
ISNAT(n__s(n__isNat(x0))) → ISNAT(isNat(x0))
ISNATILIST(n__cons(n__length(x0), y1)) → AND(isNat(length(activate(x0))), n__isNatIList(activate(y1)))
ACTIVATE(n__and(n__s(x0), y1)) → AND(s(activate(x0)), y1)
AND(tt, X) → ACTIVATE(X)
ISNATILIST(n__cons(n__nil, y1)) → AND(isNat(nil), n__isNatIList(activate(y1)))
ISNAT(n__s(V1)) → ACTIVATE(V1)
ISNATILIST(n__cons(n__s(x0), y1)) → AND(isNat(s(activate(x0))), n__isNatIList(activate(y1)))
ISNATILIST(n__cons(n__isNatIList(x0), y1)) → AND(isNat(isNatIList(x0)), n__isNatIList(activate(y1)))
ACTIVATE(n__and(x0, y1)) → AND(x0, y1)
ISNATILIST(n__cons(n__zeros, y1)) → AND(isNat(zeros), n__isNatIList(activate(y1)))
ISNATILIST(n__cons(x0, y1)) → AND(isNat(x0), n__isNatIList(activate(y1)))
ISNATILIST(n__cons(n__isNat(x0), y1)) → AND(isNat(isNat(x0)), n__isNatIList(activate(y1)))
ISNAT(n__s(n__and(x0, x1))) → ISNAT(and(activate(x0), x1))
ISNAT(n__s(n__take(x0, x1))) → ISNAT(take(activate(x0), activate(x1)))
ACTIVATE(n__isNatIList(X)) → ISNATILIST(X)
ISNAT(n__s(n__length(x0))) → ISNAT(length(activate(x0)))
ISNATLIST(n__cons(n__length(x0), y1)) → AND(isNat(length(activate(x0))), n__isNatList(activate(y1)))
ISNATILIST(n__cons(n__take(x0, x1), y1)) → AND(isNat(take(activate(x0), activate(x1))), n__isNatIList(activate(y1)))
ISNATILIST(n__cons(n__isNatList(x0), y1)) → AND(isNat(isNatList(x0)), n__isNatIList(activate(y1)))
ACTIVATE(n__and(n__length(x0), y1)) → AND(length(activate(x0)), y1)
ACTIVATE(n__and(n__and(x0, x1), y1)) → AND(and(activate(x0), x1), y1)
ACTIVATE(n__and(X1, X2)) → ACTIVATE(X1)
ISNAT(n__s(n__zeros)) → ISNAT(cons(0, n__zeros))
ACTIVATE(n__isNatList(X)) → ISNATLIST(X)
ISNATLIST(n__cons(n__isNatIList(x0), y1)) → AND(isNat(isNatIList(x0)), n__isNatList(activate(y1)))
ACTIVATE(n__and(n__isNat(x0), y1)) → AND(isNat(x0), y1)
ISNATILIST(n__cons(n__and(x0, x1), y1)) → AND(isNat(and(activate(x0), x1)), n__isNatIList(activate(y1)))
ISNATLIST(n__cons(n__isNat(x0), y1)) → AND(isNat(isNat(x0)), n__isNatList(activate(y1)))
ACTIVATE(n__and(n__cons(x0, x1), y1)) → AND(cons(activate(x0), x1), y1)
ISNAT(n__s(n__isNatIList(x0))) → ISNAT(isNatIList(x0))
ISNAT(n__s(n__cons(x0, x1))) → ISNAT(cons(activate(x0), x1))
ISNAT(n__s(n__isNatList(x0))) → ISNAT(isNatList(x0))
ISNATLIST(n__cons(n__cons(x0, x1), y1)) → AND(isNat(cons(activate(x0), x1)), n__isNatList(activate(y1)))
ACTIVATE(n__isNat(X)) → ISNAT(X)
ISNATLIST(n__cons(n__nil, y1)) → AND(isNat(nil), n__isNatList(activate(y1)))
ISNATILIST(n__cons(n__0, y1)) → AND(isNat(0), n__isNatIList(activate(y1)))
ACTIVATE(n__and(n__isNatIList(x0), y1)) → AND(isNatIList(x0), y1)
ISNAT(n__s(x0)) → ISNAT(x0)
ISNATLIST(n__cons(n__zeros, y1)) → AND(isNat(zeros), n__isNatList(activate(y1)))
The TRS R consists of the following rules:
zeros → cons(0, n__zeros)
U11(tt, L) → s(length(activate(L)))
U21(tt) → nil
U31(tt, IL, M, N) → cons(activate(N), n__take(activate(M), activate(IL)))
and(tt, X) → activate(X)
isNat(n__0) → tt
isNat(n__length(V1)) → isNatList(activate(V1))
isNat(n__s(V1)) → isNat(activate(V1))
isNatIList(V) → isNatList(activate(V))
isNatIList(n__zeros) → tt
isNatIList(n__cons(V1, V2)) → and(isNat(activate(V1)), n__isNatIList(activate(V2)))
isNatList(n__nil) → tt
isNatList(n__cons(V1, V2)) → and(isNat(activate(V1)), n__isNatList(activate(V2)))
isNatList(n__take(V1, V2)) → and(isNat(activate(V1)), n__isNatIList(activate(V2)))
length(nil) → 0
length(cons(N, L)) → U11(and(isNatList(activate(L)), n__isNat(N)), activate(L))
take(0, IL) → U21(isNatIList(IL))
take(s(M), cons(N, IL)) → U31(and(isNatIList(activate(IL)), n__and(n__isNat(M), n__isNat(N))), activate(IL), M, N)
zeros → n__zeros
take(X1, X2) → n__take(X1, X2)
0 → n__0
length(X) → n__length(X)
s(X) → n__s(X)
cons(X1, X2) → n__cons(X1, X2)
isNatIList(X) → n__isNatIList(X)
nil → n__nil
isNatList(X) → n__isNatList(X)
isNat(X) → n__isNat(X)
and(X1, X2) → n__and(X1, X2)
activate(n__zeros) → zeros
activate(n__take(X1, X2)) → take(activate(X1), activate(X2))
activate(n__0) → 0
activate(n__length(X)) → length(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(n__isNatIList(X)) → isNatIList(X)
activate(n__nil) → nil
activate(n__isNatList(X)) → isNatList(X)
activate(n__isNat(X)) → isNat(X)
activate(n__and(X1, X2)) → and(activate(X1), X2)
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By narrowing [15] the rule ISNAT(n__s(n__zeros)) → ISNAT(cons(0, n__zeros)) at position [0] we obtained the following new rules:
ISNAT(n__s(n__zeros)) → ISNAT(cons(n__0, n__zeros))
ISNAT(n__s(n__zeros)) → ISNAT(n__cons(0, n__zeros))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
ISNAT(n__s(n__s(x0))) → ISNAT(s(activate(x0)))
ISNATLIST(n__cons(n__take(x0, x1), y1)) → AND(isNat(take(activate(x0), activate(x1))), n__isNatList(activate(y1)))
ACTIVATE(n__and(n__isNatList(x0), y1)) → AND(isNatList(x0), y1)
ISNATLIST(n__cons(n__and(x0, x1), y1)) → AND(isNat(and(activate(x0), x1)), n__isNatList(activate(y1)))
ISNATLIST(n__cons(x0, y1)) → AND(isNat(x0), n__isNatList(activate(y1)))
ISNATILIST(n__cons(n__cons(x0, x1), y1)) → AND(isNat(cons(activate(x0), x1)), n__isNatIList(activate(y1)))
ISNATLIST(n__cons(n__0, y1)) → AND(isNat(0), n__isNatList(activate(y1)))
ACTIVATE(n__s(X)) → ACTIVATE(X)
ISNATLIST(n__cons(n__isNatList(x0), y1)) → AND(isNat(isNatList(x0)), n__isNatList(activate(y1)))
ISNATLIST(n__cons(n__s(x0), y1)) → AND(isNat(s(activate(x0))), n__isNatList(activate(y1)))
ACTIVATE(n__and(n__take(x0, x1), y1)) → AND(take(activate(x0), activate(x1)), y1)
ISNAT(n__s(n__isNat(x0))) → ISNAT(isNat(x0))
ISNATILIST(n__cons(n__length(x0), y1)) → AND(isNat(length(activate(x0))), n__isNatIList(activate(y1)))
ACTIVATE(n__and(n__s(x0), y1)) → AND(s(activate(x0)), y1)
ISNAT(n__s(V1)) → ACTIVATE(V1)
ISNATILIST(n__cons(n__nil, y1)) → AND(isNat(nil), n__isNatIList(activate(y1)))
AND(tt, X) → ACTIVATE(X)
ISNATILIST(n__cons(n__s(x0), y1)) → AND(isNat(s(activate(x0))), n__isNatIList(activate(y1)))
ISNATILIST(n__cons(n__isNatIList(x0), y1)) → AND(isNat(isNatIList(x0)), n__isNatIList(activate(y1)))
ACTIVATE(n__and(x0, y1)) → AND(x0, y1)
ISNATILIST(n__cons(n__zeros, y1)) → AND(isNat(zeros), n__isNatIList(activate(y1)))
ISNATILIST(n__cons(x0, y1)) → AND(isNat(x0), n__isNatIList(activate(y1)))
ISNAT(n__s(n__take(x0, x1))) → ISNAT(take(activate(x0), activate(x1)))
ISNAT(n__s(n__and(x0, x1))) → ISNAT(and(activate(x0), x1))
ISNATILIST(n__cons(n__isNat(x0), y1)) → AND(isNat(isNat(x0)), n__isNatIList(activate(y1)))
ISNAT(n__s(n__length(x0))) → ISNAT(length(activate(x0)))
ACTIVATE(n__isNatIList(X)) → ISNATILIST(X)
ISNATILIST(n__cons(n__take(x0, x1), y1)) → AND(isNat(take(activate(x0), activate(x1))), n__isNatIList(activate(y1)))
ISNATLIST(n__cons(n__length(x0), y1)) → AND(isNat(length(activate(x0))), n__isNatList(activate(y1)))
ISNATILIST(n__cons(n__isNatList(x0), y1)) → AND(isNat(isNatList(x0)), n__isNatIList(activate(y1)))
ACTIVATE(n__and(n__length(x0), y1)) → AND(length(activate(x0)), y1)
ACTIVATE(n__and(n__and(x0, x1), y1)) → AND(and(activate(x0), x1), y1)
ACTIVATE(n__and(X1, X2)) → ACTIVATE(X1)
ACTIVATE(n__isNatList(X)) → ISNATLIST(X)
ACTIVATE(n__and(n__isNat(x0), y1)) → AND(isNat(x0), y1)
ISNATLIST(n__cons(n__isNatIList(x0), y1)) → AND(isNat(isNatIList(x0)), n__isNatList(activate(y1)))
ISNATILIST(n__cons(n__and(x0, x1), y1)) → AND(isNat(and(activate(x0), x1)), n__isNatIList(activate(y1)))
ISNATLIST(n__cons(n__isNat(x0), y1)) → AND(isNat(isNat(x0)), n__isNatList(activate(y1)))
ACTIVATE(n__and(n__cons(x0, x1), y1)) → AND(cons(activate(x0), x1), y1)
ISNAT(n__s(n__isNatIList(x0))) → ISNAT(isNatIList(x0))
ISNAT(n__s(n__cons(x0, x1))) → ISNAT(cons(activate(x0), x1))
ISNAT(n__s(n__zeros)) → ISNAT(cons(n__0, n__zeros))
ISNAT(n__s(n__isNatList(x0))) → ISNAT(isNatList(x0))
ISNATLIST(n__cons(n__cons(x0, x1), y1)) → AND(isNat(cons(activate(x0), x1)), n__isNatList(activate(y1)))
ISNAT(n__s(n__zeros)) → ISNAT(n__cons(0, n__zeros))
ACTIVATE(n__isNat(X)) → ISNAT(X)
ISNATILIST(n__cons(n__0, y1)) → AND(isNat(0), n__isNatIList(activate(y1)))
ISNATLIST(n__cons(n__nil, y1)) → AND(isNat(nil), n__isNatList(activate(y1)))
ISNAT(n__s(x0)) → ISNAT(x0)
ACTIVATE(n__and(n__isNatIList(x0), y1)) → AND(isNatIList(x0), y1)
ISNATLIST(n__cons(n__zeros, y1)) → AND(isNat(zeros), n__isNatList(activate(y1)))
The TRS R consists of the following rules:
zeros → cons(0, n__zeros)
U11(tt, L) → s(length(activate(L)))
U21(tt) → nil
U31(tt, IL, M, N) → cons(activate(N), n__take(activate(M), activate(IL)))
and(tt, X) → activate(X)
isNat(n__0) → tt
isNat(n__length(V1)) → isNatList(activate(V1))
isNat(n__s(V1)) → isNat(activate(V1))
isNatIList(V) → isNatList(activate(V))
isNatIList(n__zeros) → tt
isNatIList(n__cons(V1, V2)) → and(isNat(activate(V1)), n__isNatIList(activate(V2)))
isNatList(n__nil) → tt
isNatList(n__cons(V1, V2)) → and(isNat(activate(V1)), n__isNatList(activate(V2)))
isNatList(n__take(V1, V2)) → and(isNat(activate(V1)), n__isNatIList(activate(V2)))
length(nil) → 0
length(cons(N, L)) → U11(and(isNatList(activate(L)), n__isNat(N)), activate(L))
take(0, IL) → U21(isNatIList(IL))
take(s(M), cons(N, IL)) → U31(and(isNatIList(activate(IL)), n__and(n__isNat(M), n__isNat(N))), activate(IL), M, N)
zeros → n__zeros
take(X1, X2) → n__take(X1, X2)
0 → n__0
length(X) → n__length(X)
s(X) → n__s(X)
cons(X1, X2) → n__cons(X1, X2)
isNatIList(X) → n__isNatIList(X)
nil → n__nil
isNatList(X) → n__isNatList(X)
isNat(X) → n__isNat(X)
and(X1, X2) → n__and(X1, X2)
activate(n__zeros) → zeros
activate(n__take(X1, X2)) → take(activate(X1), activate(X2))
activate(n__0) → 0
activate(n__length(X)) → length(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(n__isNatIList(X)) → isNatIList(X)
activate(n__nil) → nil
activate(n__isNatList(X)) → isNatList(X)
activate(n__isNat(X)) → isNat(X)
activate(n__and(X1, X2)) → and(activate(X1), X2)
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 1 SCC with 1 less node.
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
ISNATLIST(n__cons(n__take(x0, x1), y1)) → AND(isNat(take(activate(x0), activate(x1))), n__isNatList(activate(y1)))
ISNAT(n__s(n__s(x0))) → ISNAT(s(activate(x0)))
ACTIVATE(n__and(n__isNatList(x0), y1)) → AND(isNatList(x0), y1)
ISNATLIST(n__cons(n__and(x0, x1), y1)) → AND(isNat(and(activate(x0), x1)), n__isNatList(activate(y1)))
ISNATLIST(n__cons(x0, y1)) → AND(isNat(x0), n__isNatList(activate(y1)))
ISNATLIST(n__cons(n__0, y1)) → AND(isNat(0), n__isNatList(activate(y1)))
ISNATILIST(n__cons(n__cons(x0, x1), y1)) → AND(isNat(cons(activate(x0), x1)), n__isNatIList(activate(y1)))
ACTIVATE(n__s(X)) → ACTIVATE(X)
ISNATLIST(n__cons(n__isNatList(x0), y1)) → AND(isNat(isNatList(x0)), n__isNatList(activate(y1)))
ISNATLIST(n__cons(n__s(x0), y1)) → AND(isNat(s(activate(x0))), n__isNatList(activate(y1)))
ACTIVATE(n__and(n__take(x0, x1), y1)) → AND(take(activate(x0), activate(x1)), y1)
ISNAT(n__s(n__isNat(x0))) → ISNAT(isNat(x0))
ISNATILIST(n__cons(n__length(x0), y1)) → AND(isNat(length(activate(x0))), n__isNatIList(activate(y1)))
ACTIVATE(n__and(n__s(x0), y1)) → AND(s(activate(x0)), y1)
ISNAT(n__s(V1)) → ACTIVATE(V1)
AND(tt, X) → ACTIVATE(X)
ISNATILIST(n__cons(n__nil, y1)) → AND(isNat(nil), n__isNatIList(activate(y1)))
ISNATILIST(n__cons(n__s(x0), y1)) → AND(isNat(s(activate(x0))), n__isNatIList(activate(y1)))
ISNATILIST(n__cons(n__isNatIList(x0), y1)) → AND(isNat(isNatIList(x0)), n__isNatIList(activate(y1)))
ACTIVATE(n__and(x0, y1)) → AND(x0, y1)
ISNATILIST(n__cons(n__zeros, y1)) → AND(isNat(zeros), n__isNatIList(activate(y1)))
ISNATILIST(n__cons(x0, y1)) → AND(isNat(x0), n__isNatIList(activate(y1)))
ISNAT(n__s(n__and(x0, x1))) → ISNAT(and(activate(x0), x1))
ISNAT(n__s(n__take(x0, x1))) → ISNAT(take(activate(x0), activate(x1)))
ISNATILIST(n__cons(n__isNat(x0), y1)) → AND(isNat(isNat(x0)), n__isNatIList(activate(y1)))
ACTIVATE(n__isNatIList(X)) → ISNATILIST(X)
ISNAT(n__s(n__length(x0))) → ISNAT(length(activate(x0)))
ISNATILIST(n__cons(n__take(x0, x1), y1)) → AND(isNat(take(activate(x0), activate(x1))), n__isNatIList(activate(y1)))
ISNATLIST(n__cons(n__length(x0), y1)) → AND(isNat(length(activate(x0))), n__isNatList(activate(y1)))
ISNATILIST(n__cons(n__isNatList(x0), y1)) → AND(isNat(isNatList(x0)), n__isNatIList(activate(y1)))
ACTIVATE(n__and(n__length(x0), y1)) → AND(length(activate(x0)), y1)
ACTIVATE(n__and(n__and(x0, x1), y1)) → AND(and(activate(x0), x1), y1)
ACTIVATE(n__and(X1, X2)) → ACTIVATE(X1)
ACTIVATE(n__isNatList(X)) → ISNATLIST(X)
ACTIVATE(n__and(n__isNat(x0), y1)) → AND(isNat(x0), y1)
ISNATLIST(n__cons(n__isNatIList(x0), y1)) → AND(isNat(isNatIList(x0)), n__isNatList(activate(y1)))
ISNATILIST(n__cons(n__and(x0, x1), y1)) → AND(isNat(and(activate(x0), x1)), n__isNatIList(activate(y1)))
ISNATLIST(n__cons(n__isNat(x0), y1)) → AND(isNat(isNat(x0)), n__isNatList(activate(y1)))
ACTIVATE(n__and(n__cons(x0, x1), y1)) → AND(cons(activate(x0), x1), y1)
ISNAT(n__s(n__isNatIList(x0))) → ISNAT(isNatIList(x0))
ISNAT(n__s(n__cons(x0, x1))) → ISNAT(cons(activate(x0), x1))
ISNAT(n__s(n__zeros)) → ISNAT(cons(n__0, n__zeros))
ISNAT(n__s(n__isNatList(x0))) → ISNAT(isNatList(x0))
ISNATLIST(n__cons(n__cons(x0, x1), y1)) → AND(isNat(cons(activate(x0), x1)), n__isNatList(activate(y1)))
ACTIVATE(n__isNat(X)) → ISNAT(X)
ISNATLIST(n__cons(n__nil, y1)) → AND(isNat(nil), n__isNatList(activate(y1)))
ISNATILIST(n__cons(n__0, y1)) → AND(isNat(0), n__isNatIList(activate(y1)))
ACTIVATE(n__and(n__isNatIList(x0), y1)) → AND(isNatIList(x0), y1)
ISNAT(n__s(x0)) → ISNAT(x0)
ISNATLIST(n__cons(n__zeros, y1)) → AND(isNat(zeros), n__isNatList(activate(y1)))
The TRS R consists of the following rules:
zeros → cons(0, n__zeros)
U11(tt, L) → s(length(activate(L)))
U21(tt) → nil
U31(tt, IL, M, N) → cons(activate(N), n__take(activate(M), activate(IL)))
and(tt, X) → activate(X)
isNat(n__0) → tt
isNat(n__length(V1)) → isNatList(activate(V1))
isNat(n__s(V1)) → isNat(activate(V1))
isNatIList(V) → isNatList(activate(V))
isNatIList(n__zeros) → tt
isNatIList(n__cons(V1, V2)) → and(isNat(activate(V1)), n__isNatIList(activate(V2)))
isNatList(n__nil) → tt
isNatList(n__cons(V1, V2)) → and(isNat(activate(V1)), n__isNatList(activate(V2)))
isNatList(n__take(V1, V2)) → and(isNat(activate(V1)), n__isNatIList(activate(V2)))
length(nil) → 0
length(cons(N, L)) → U11(and(isNatList(activate(L)), n__isNat(N)), activate(L))
take(0, IL) → U21(isNatIList(IL))
take(s(M), cons(N, IL)) → U31(and(isNatIList(activate(IL)), n__and(n__isNat(M), n__isNat(N))), activate(IL), M, N)
zeros → n__zeros
take(X1, X2) → n__take(X1, X2)
0 → n__0
length(X) → n__length(X)
s(X) → n__s(X)
cons(X1, X2) → n__cons(X1, X2)
isNatIList(X) → n__isNatIList(X)
nil → n__nil
isNatList(X) → n__isNatList(X)
isNat(X) → n__isNat(X)
and(X1, X2) → n__and(X1, X2)
activate(n__zeros) → zeros
activate(n__take(X1, X2)) → take(activate(X1), activate(X2))
activate(n__0) → 0
activate(n__length(X)) → length(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(n__isNatIList(X)) → isNatIList(X)
activate(n__nil) → nil
activate(n__isNatList(X)) → isNatList(X)
activate(n__isNat(X)) → isNat(X)
activate(n__and(X1, X2)) → and(activate(X1), X2)
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By narrowing [15] the rule ISNAT(n__s(n__zeros)) → ISNAT(cons(n__0, n__zeros)) at position [0] we obtained the following new rules:
ISNAT(n__s(n__zeros)) → ISNAT(n__cons(n__0, n__zeros))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
ISNAT(n__s(n__s(x0))) → ISNAT(s(activate(x0)))
ISNATLIST(n__cons(n__take(x0, x1), y1)) → AND(isNat(take(activate(x0), activate(x1))), n__isNatList(activate(y1)))
ACTIVATE(n__and(n__isNatList(x0), y1)) → AND(isNatList(x0), y1)
ISNATLIST(n__cons(n__and(x0, x1), y1)) → AND(isNat(and(activate(x0), x1)), n__isNatList(activate(y1)))
ISNAT(n__s(n__zeros)) → ISNAT(n__cons(n__0, n__zeros))
ISNATLIST(n__cons(x0, y1)) → AND(isNat(x0), n__isNatList(activate(y1)))
ISNATILIST(n__cons(n__cons(x0, x1), y1)) → AND(isNat(cons(activate(x0), x1)), n__isNatIList(activate(y1)))
ISNATLIST(n__cons(n__0, y1)) → AND(isNat(0), n__isNatList(activate(y1)))
ACTIVATE(n__s(X)) → ACTIVATE(X)
ISNATLIST(n__cons(n__isNatList(x0), y1)) → AND(isNat(isNatList(x0)), n__isNatList(activate(y1)))
ISNATLIST(n__cons(n__s(x0), y1)) → AND(isNat(s(activate(x0))), n__isNatList(activate(y1)))
ACTIVATE(n__and(n__take(x0, x1), y1)) → AND(take(activate(x0), activate(x1)), y1)
ISNAT(n__s(n__isNat(x0))) → ISNAT(isNat(x0))
ISNATILIST(n__cons(n__length(x0), y1)) → AND(isNat(length(activate(x0))), n__isNatIList(activate(y1)))
ACTIVATE(n__and(n__s(x0), y1)) → AND(s(activate(x0)), y1)
ISNATILIST(n__cons(n__nil, y1)) → AND(isNat(nil), n__isNatIList(activate(y1)))
AND(tt, X) → ACTIVATE(X)
ISNAT(n__s(V1)) → ACTIVATE(V1)
ISNATILIST(n__cons(n__s(x0), y1)) → AND(isNat(s(activate(x0))), n__isNatIList(activate(y1)))
ISNATILIST(n__cons(n__isNatIList(x0), y1)) → AND(isNat(isNatIList(x0)), n__isNatIList(activate(y1)))
ACTIVATE(n__and(x0, y1)) → AND(x0, y1)
ISNATILIST(n__cons(n__zeros, y1)) → AND(isNat(zeros), n__isNatIList(activate(y1)))
ISNATILIST(n__cons(x0, y1)) → AND(isNat(x0), n__isNatIList(activate(y1)))
ISNATILIST(n__cons(n__isNat(x0), y1)) → AND(isNat(isNat(x0)), n__isNatIList(activate(y1)))
ISNAT(n__s(n__take(x0, x1))) → ISNAT(take(activate(x0), activate(x1)))
ISNAT(n__s(n__and(x0, x1))) → ISNAT(and(activate(x0), x1))
ISNAT(n__s(n__length(x0))) → ISNAT(length(activate(x0)))
ACTIVATE(n__isNatIList(X)) → ISNATILIST(X)
ISNATLIST(n__cons(n__length(x0), y1)) → AND(isNat(length(activate(x0))), n__isNatList(activate(y1)))
ISNATILIST(n__cons(n__take(x0, x1), y1)) → AND(isNat(take(activate(x0), activate(x1))), n__isNatIList(activate(y1)))
ISNATILIST(n__cons(n__isNatList(x0), y1)) → AND(isNat(isNatList(x0)), n__isNatIList(activate(y1)))
ACTIVATE(n__and(n__length(x0), y1)) → AND(length(activate(x0)), y1)
ACTIVATE(n__and(n__and(x0, x1), y1)) → AND(and(activate(x0), x1), y1)
ACTIVATE(n__and(X1, X2)) → ACTIVATE(X1)
ACTIVATE(n__isNatList(X)) → ISNATLIST(X)
ISNATLIST(n__cons(n__isNatIList(x0), y1)) → AND(isNat(isNatIList(x0)), n__isNatList(activate(y1)))
ACTIVATE(n__and(n__isNat(x0), y1)) → AND(isNat(x0), y1)
ISNATILIST(n__cons(n__and(x0, x1), y1)) → AND(isNat(and(activate(x0), x1)), n__isNatIList(activate(y1)))
ISNATLIST(n__cons(n__isNat(x0), y1)) → AND(isNat(isNat(x0)), n__isNatList(activate(y1)))
ACTIVATE(n__and(n__cons(x0, x1), y1)) → AND(cons(activate(x0), x1), y1)
ISNAT(n__s(n__isNatIList(x0))) → ISNAT(isNatIList(x0))
ISNAT(n__s(n__cons(x0, x1))) → ISNAT(cons(activate(x0), x1))
ISNAT(n__s(n__isNatList(x0))) → ISNAT(isNatList(x0))
ISNATLIST(n__cons(n__cons(x0, x1), y1)) → AND(isNat(cons(activate(x0), x1)), n__isNatList(activate(y1)))
ACTIVATE(n__isNat(X)) → ISNAT(X)
ISNATILIST(n__cons(n__0, y1)) → AND(isNat(0), n__isNatIList(activate(y1)))
ISNATLIST(n__cons(n__nil, y1)) → AND(isNat(nil), n__isNatList(activate(y1)))
ISNAT(n__s(x0)) → ISNAT(x0)
ACTIVATE(n__and(n__isNatIList(x0), y1)) → AND(isNatIList(x0), y1)
ISNATLIST(n__cons(n__zeros, y1)) → AND(isNat(zeros), n__isNatList(activate(y1)))
The TRS R consists of the following rules:
zeros → cons(0, n__zeros)
U11(tt, L) → s(length(activate(L)))
U21(tt) → nil
U31(tt, IL, M, N) → cons(activate(N), n__take(activate(M), activate(IL)))
and(tt, X) → activate(X)
isNat(n__0) → tt
isNat(n__length(V1)) → isNatList(activate(V1))
isNat(n__s(V1)) → isNat(activate(V1))
isNatIList(V) → isNatList(activate(V))
isNatIList(n__zeros) → tt
isNatIList(n__cons(V1, V2)) → and(isNat(activate(V1)), n__isNatIList(activate(V2)))
isNatList(n__nil) → tt
isNatList(n__cons(V1, V2)) → and(isNat(activate(V1)), n__isNatList(activate(V2)))
isNatList(n__take(V1, V2)) → and(isNat(activate(V1)), n__isNatIList(activate(V2)))
length(nil) → 0
length(cons(N, L)) → U11(and(isNatList(activate(L)), n__isNat(N)), activate(L))
take(0, IL) → U21(isNatIList(IL))
take(s(M), cons(N, IL)) → U31(and(isNatIList(activate(IL)), n__and(n__isNat(M), n__isNat(N))), activate(IL), M, N)
zeros → n__zeros
take(X1, X2) → n__take(X1, X2)
0 → n__0
length(X) → n__length(X)
s(X) → n__s(X)
cons(X1, X2) → n__cons(X1, X2)
isNatIList(X) → n__isNatIList(X)
nil → n__nil
isNatList(X) → n__isNatList(X)
isNat(X) → n__isNat(X)
and(X1, X2) → n__and(X1, X2)
activate(n__zeros) → zeros
activate(n__take(X1, X2)) → take(activate(X1), activate(X2))
activate(n__0) → 0
activate(n__length(X)) → length(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(n__isNatIList(X)) → isNatIList(X)
activate(n__nil) → nil
activate(n__isNatList(X)) → isNatList(X)
activate(n__isNat(X)) → isNat(X)
activate(n__and(X1, X2)) → and(activate(X1), X2)
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 1 SCC with 1 less node.
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDPOrderProof
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
ISNATLIST(n__cons(n__take(x0, x1), y1)) → AND(isNat(take(activate(x0), activate(x1))), n__isNatList(activate(y1)))
ISNAT(n__s(n__s(x0))) → ISNAT(s(activate(x0)))
ACTIVATE(n__and(n__isNatList(x0), y1)) → AND(isNatList(x0), y1)
ISNATLIST(n__cons(n__and(x0, x1), y1)) → AND(isNat(and(activate(x0), x1)), n__isNatList(activate(y1)))
ISNATLIST(n__cons(x0, y1)) → AND(isNat(x0), n__isNatList(activate(y1)))
ISNATLIST(n__cons(n__0, y1)) → AND(isNat(0), n__isNatList(activate(y1)))
ISNATILIST(n__cons(n__cons(x0, x1), y1)) → AND(isNat(cons(activate(x0), x1)), n__isNatIList(activate(y1)))
ACTIVATE(n__s(X)) → ACTIVATE(X)
ISNATLIST(n__cons(n__isNatList(x0), y1)) → AND(isNat(isNatList(x0)), n__isNatList(activate(y1)))
ISNATLIST(n__cons(n__s(x0), y1)) → AND(isNat(s(activate(x0))), n__isNatList(activate(y1)))
ACTIVATE(n__and(n__take(x0, x1), y1)) → AND(take(activate(x0), activate(x1)), y1)
ISNAT(n__s(n__isNat(x0))) → ISNAT(isNat(x0))
ISNATILIST(n__cons(n__length(x0), y1)) → AND(isNat(length(activate(x0))), n__isNatIList(activate(y1)))
ACTIVATE(n__and(n__s(x0), y1)) → AND(s(activate(x0)), y1)
ISNAT(n__s(V1)) → ACTIVATE(V1)
AND(tt, X) → ACTIVATE(X)
ISNATILIST(n__cons(n__nil, y1)) → AND(isNat(nil), n__isNatIList(activate(y1)))
ISNATILIST(n__cons(n__s(x0), y1)) → AND(isNat(s(activate(x0))), n__isNatIList(activate(y1)))
ISNATILIST(n__cons(n__isNatIList(x0), y1)) → AND(isNat(isNatIList(x0)), n__isNatIList(activate(y1)))
ACTIVATE(n__and(x0, y1)) → AND(x0, y1)
ISNATILIST(n__cons(n__zeros, y1)) → AND(isNat(zeros), n__isNatIList(activate(y1)))
ISNATILIST(n__cons(x0, y1)) → AND(isNat(x0), n__isNatIList(activate(y1)))
ISNAT(n__s(n__and(x0, x1))) → ISNAT(and(activate(x0), x1))
ISNAT(n__s(n__take(x0, x1))) → ISNAT(take(activate(x0), activate(x1)))
ISNATILIST(n__cons(n__isNat(x0), y1)) → AND(isNat(isNat(x0)), n__isNatIList(activate(y1)))
ACTIVATE(n__isNatIList(X)) → ISNATILIST(X)
ISNAT(n__s(n__length(x0))) → ISNAT(length(activate(x0)))
ISNATILIST(n__cons(n__take(x0, x1), y1)) → AND(isNat(take(activate(x0), activate(x1))), n__isNatIList(activate(y1)))
ISNATLIST(n__cons(n__length(x0), y1)) → AND(isNat(length(activate(x0))), n__isNatList(activate(y1)))
ISNATILIST(n__cons(n__isNatList(x0), y1)) → AND(isNat(isNatList(x0)), n__isNatIList(activate(y1)))
ACTIVATE(n__and(n__length(x0), y1)) → AND(length(activate(x0)), y1)
ACTIVATE(n__and(n__and(x0, x1), y1)) → AND(and(activate(x0), x1), y1)
ACTIVATE(n__and(X1, X2)) → ACTIVATE(X1)
ACTIVATE(n__isNatList(X)) → ISNATLIST(X)
ACTIVATE(n__and(n__isNat(x0), y1)) → AND(isNat(x0), y1)
ISNATLIST(n__cons(n__isNatIList(x0), y1)) → AND(isNat(isNatIList(x0)), n__isNatList(activate(y1)))
ISNATILIST(n__cons(n__and(x0, x1), y1)) → AND(isNat(and(activate(x0), x1)), n__isNatIList(activate(y1)))
ISNATLIST(n__cons(n__isNat(x0), y1)) → AND(isNat(isNat(x0)), n__isNatList(activate(y1)))
ACTIVATE(n__and(n__cons(x0, x1), y1)) → AND(cons(activate(x0), x1), y1)
ISNAT(n__s(n__isNatIList(x0))) → ISNAT(isNatIList(x0))
ISNAT(n__s(n__cons(x0, x1))) → ISNAT(cons(activate(x0), x1))
ISNAT(n__s(n__isNatList(x0))) → ISNAT(isNatList(x0))
ISNATLIST(n__cons(n__cons(x0, x1), y1)) → AND(isNat(cons(activate(x0), x1)), n__isNatList(activate(y1)))
ACTIVATE(n__isNat(X)) → ISNAT(X)
ISNATLIST(n__cons(n__nil, y1)) → AND(isNat(nil), n__isNatList(activate(y1)))
ISNATILIST(n__cons(n__0, y1)) → AND(isNat(0), n__isNatIList(activate(y1)))
ACTIVATE(n__and(n__isNatIList(x0), y1)) → AND(isNatIList(x0), y1)
ISNAT(n__s(x0)) → ISNAT(x0)
ISNATLIST(n__cons(n__zeros, y1)) → AND(isNat(zeros), n__isNatList(activate(y1)))
The TRS R consists of the following rules:
zeros → cons(0, n__zeros)
U11(tt, L) → s(length(activate(L)))
U21(tt) → nil
U31(tt, IL, M, N) → cons(activate(N), n__take(activate(M), activate(IL)))
and(tt, X) → activate(X)
isNat(n__0) → tt
isNat(n__length(V1)) → isNatList(activate(V1))
isNat(n__s(V1)) → isNat(activate(V1))
isNatIList(V) → isNatList(activate(V))
isNatIList(n__zeros) → tt
isNatIList(n__cons(V1, V2)) → and(isNat(activate(V1)), n__isNatIList(activate(V2)))
isNatList(n__nil) → tt
isNatList(n__cons(V1, V2)) → and(isNat(activate(V1)), n__isNatList(activate(V2)))
isNatList(n__take(V1, V2)) → and(isNat(activate(V1)), n__isNatIList(activate(V2)))
length(nil) → 0
length(cons(N, L)) → U11(and(isNatList(activate(L)), n__isNat(N)), activate(L))
take(0, IL) → U21(isNatIList(IL))
take(s(M), cons(N, IL)) → U31(and(isNatIList(activate(IL)), n__and(n__isNat(M), n__isNat(N))), activate(IL), M, N)
zeros → n__zeros
take(X1, X2) → n__take(X1, X2)
0 → n__0
length(X) → n__length(X)
s(X) → n__s(X)
cons(X1, X2) → n__cons(X1, X2)
isNatIList(X) → n__isNatIList(X)
nil → n__nil
isNatList(X) → n__isNatList(X)
isNat(X) → n__isNat(X)
and(X1, X2) → n__and(X1, X2)
activate(n__zeros) → zeros
activate(n__take(X1, X2)) → take(activate(X1), activate(X2))
activate(n__0) → 0
activate(n__length(X)) → length(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(n__isNatIList(X)) → isNatIList(X)
activate(n__nil) → nil
activate(n__isNatList(X)) → isNatList(X)
activate(n__isNat(X)) → isNat(X)
activate(n__and(X1, X2)) → and(activate(X1), X2)
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].
The following pairs can be oriented strictly and are deleted.
ISNATLIST(n__cons(n__take(x0, x1), y1)) → AND(isNat(take(activate(x0), activate(x1))), n__isNatList(activate(y1)))
ACTIVATE(n__and(n__take(x0, x1), y1)) → AND(take(activate(x0), activate(x1)), y1)
ISNATILIST(n__cons(n__take(x0, x1), y1)) → AND(isNat(take(activate(x0), activate(x1))), n__isNatIList(activate(y1)))
The remaining pairs can at least be oriented weakly.
ISNAT(n__s(n__s(x0))) → ISNAT(s(activate(x0)))
ACTIVATE(n__and(n__isNatList(x0), y1)) → AND(isNatList(x0), y1)
ISNATLIST(n__cons(n__and(x0, x1), y1)) → AND(isNat(and(activate(x0), x1)), n__isNatList(activate(y1)))
ISNATLIST(n__cons(x0, y1)) → AND(isNat(x0), n__isNatList(activate(y1)))
ISNATLIST(n__cons(n__0, y1)) → AND(isNat(0), n__isNatList(activate(y1)))
ISNATILIST(n__cons(n__cons(x0, x1), y1)) → AND(isNat(cons(activate(x0), x1)), n__isNatIList(activate(y1)))
ACTIVATE(n__s(X)) → ACTIVATE(X)
ISNATLIST(n__cons(n__isNatList(x0), y1)) → AND(isNat(isNatList(x0)), n__isNatList(activate(y1)))
ISNATLIST(n__cons(n__s(x0), y1)) → AND(isNat(s(activate(x0))), n__isNatList(activate(y1)))
ISNAT(n__s(n__isNat(x0))) → ISNAT(isNat(x0))
ISNATILIST(n__cons(n__length(x0), y1)) → AND(isNat(length(activate(x0))), n__isNatIList(activate(y1)))
ACTIVATE(n__and(n__s(x0), y1)) → AND(s(activate(x0)), y1)
ISNAT(n__s(V1)) → ACTIVATE(V1)
AND(tt, X) → ACTIVATE(X)
ISNATILIST(n__cons(n__nil, y1)) → AND(isNat(nil), n__isNatIList(activate(y1)))
ISNATILIST(n__cons(n__s(x0), y1)) → AND(isNat(s(activate(x0))), n__isNatIList(activate(y1)))
ISNATILIST(n__cons(n__isNatIList(x0), y1)) → AND(isNat(isNatIList(x0)), n__isNatIList(activate(y1)))
ACTIVATE(n__and(x0, y1)) → AND(x0, y1)
ISNATILIST(n__cons(n__zeros, y1)) → AND(isNat(zeros), n__isNatIList(activate(y1)))
ISNATILIST(n__cons(x0, y1)) → AND(isNat(x0), n__isNatIList(activate(y1)))
ISNAT(n__s(n__and(x0, x1))) → ISNAT(and(activate(x0), x1))
ISNAT(n__s(n__take(x0, x1))) → ISNAT(take(activate(x0), activate(x1)))
ISNATILIST(n__cons(n__isNat(x0), y1)) → AND(isNat(isNat(x0)), n__isNatIList(activate(y1)))
ACTIVATE(n__isNatIList(X)) → ISNATILIST(X)
ISNAT(n__s(n__length(x0))) → ISNAT(length(activate(x0)))
ISNATLIST(n__cons(n__length(x0), y1)) → AND(isNat(length(activate(x0))), n__isNatList(activate(y1)))
ISNATILIST(n__cons(n__isNatList(x0), y1)) → AND(isNat(isNatList(x0)), n__isNatIList(activate(y1)))
ACTIVATE(n__and(n__length(x0), y1)) → AND(length(activate(x0)), y1)
ACTIVATE(n__and(n__and(x0, x1), y1)) → AND(and(activate(x0), x1), y1)
ACTIVATE(n__and(X1, X2)) → ACTIVATE(X1)
ACTIVATE(n__isNatList(X)) → ISNATLIST(X)
ACTIVATE(n__and(n__isNat(x0), y1)) → AND(isNat(x0), y1)
ISNATLIST(n__cons(n__isNatIList(x0), y1)) → AND(isNat(isNatIList(x0)), n__isNatList(activate(y1)))
ISNATILIST(n__cons(n__and(x0, x1), y1)) → AND(isNat(and(activate(x0), x1)), n__isNatIList(activate(y1)))
ISNATLIST(n__cons(n__isNat(x0), y1)) → AND(isNat(isNat(x0)), n__isNatList(activate(y1)))
ACTIVATE(n__and(n__cons(x0, x1), y1)) → AND(cons(activate(x0), x1), y1)
ISNAT(n__s(n__isNatIList(x0))) → ISNAT(isNatIList(x0))
ISNAT(n__s(n__cons(x0, x1))) → ISNAT(cons(activate(x0), x1))
ISNAT(n__s(n__isNatList(x0))) → ISNAT(isNatList(x0))
ISNATLIST(n__cons(n__cons(x0, x1), y1)) → AND(isNat(cons(activate(x0), x1)), n__isNatList(activate(y1)))
ACTIVATE(n__isNat(X)) → ISNAT(X)
ISNATLIST(n__cons(n__nil, y1)) → AND(isNat(nil), n__isNatList(activate(y1)))
ISNATILIST(n__cons(n__0, y1)) → AND(isNat(0), n__isNatIList(activate(y1)))
ACTIVATE(n__and(n__isNatIList(x0), y1)) → AND(isNatIList(x0), y1)
ISNAT(n__s(x0)) → ISNAT(x0)
ISNATLIST(n__cons(n__zeros, y1)) → AND(isNat(zeros), n__isNatList(activate(y1)))
Used ordering: Polynomial interpretation with max and min functions [25]:
POL(0) = 0
POL(ACTIVATE(x1)) = x1
POL(AND(x1, x2)) = x2
POL(ISNAT(x1)) = x1
POL(ISNATILIST(x1)) = x1
POL(ISNATLIST(x1)) = x1
POL(U11(x1, x2)) = x2
POL(U21(x1)) = 1 + x1
POL(U31(x1, x2, x3, x4)) = 1 + x2 + x3 + x4
POL(activate(x1)) = x1
POL(and(x1, x2)) = x1 + x2
POL(cons(x1, x2)) = x1 + x2
POL(isNat(x1)) = x1
POL(isNatIList(x1)) = x1
POL(isNatList(x1)) = x1
POL(length(x1)) = x1
POL(n__0) = 0
POL(n__and(x1, x2)) = x1 + x2
POL(n__cons(x1, x2)) = x1 + x2
POL(n__isNat(x1)) = x1
POL(n__isNatIList(x1)) = x1
POL(n__isNatList(x1)) = x1
POL(n__length(x1)) = x1
POL(n__nil) = 0
POL(n__s(x1)) = x1
POL(n__take(x1, x2)) = 1 + x1 + x2
POL(n__zeros) = 0
POL(nil) = 0
POL(s(x1)) = x1
POL(take(x1, x2)) = 1 + x1 + x2
POL(tt) = 0
POL(zeros) = 0
The following usable rules [17] were oriented:
isNatIList(X) → n__isNatIList(X)
cons(X1, X2) → n__cons(X1, X2)
isNatList(X) → n__isNatList(X)
nil → n__nil
and(X1, X2) → n__and(X1, X2)
isNat(X) → n__isNat(X)
activate(n__take(X1, X2)) → take(activate(X1), activate(X2))
activate(n__zeros) → zeros
take(0, IL) → U21(isNatIList(IL))
length(cons(N, L)) → U11(and(isNatList(activate(L)), n__isNat(N)), activate(L))
zeros → n__zeros
take(s(M), cons(N, IL)) → U31(and(isNatIList(activate(IL)), n__and(n__isNat(M), n__isNat(N))), activate(IL), M, N)
0 → n__0
take(X1, X2) → n__take(X1, X2)
s(X) → n__s(X)
length(X) → n__length(X)
activate(X) → X
activate(n__0) → 0
activate(n__length(X)) → length(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
isNatList(n__cons(V1, V2)) → and(isNat(activate(V1)), n__isNatList(activate(V2)))
isNatIList(V) → isNatList(activate(V))
activate(n__isNat(X)) → isNat(X)
activate(n__and(X1, X2)) → and(activate(X1), X2)
isNat(n__s(V1)) → isNat(activate(V1))
and(tt, X) → activate(X)
isNatIList(n__cons(V1, V2)) → and(isNat(activate(V1)), n__isNatIList(activate(V2)))
isNatList(n__take(V1, V2)) → and(isNat(activate(V1)), n__isNatIList(activate(V2)))
activate(n__isNatIList(X)) → isNatIList(X)
isNat(n__length(V1)) → isNatList(activate(V1))
activate(n__isNatList(X)) → isNatList(X)
activate(n__nil) → nil
isNat(n__0) → tt
U31(tt, IL, M, N) → cons(activate(N), n__take(activate(M), activate(IL)))
U21(tt) → nil
U11(tt, L) → s(length(activate(L)))
zeros → cons(0, n__zeros)
length(nil) → 0
isNatList(n__nil) → tt
isNatIList(n__zeros) → tt
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDPOrderProof
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
ISNAT(n__s(n__s(x0))) → ISNAT(s(activate(x0)))
ISNATLIST(n__cons(n__length(x0), y1)) → AND(isNat(length(activate(x0))), n__isNatList(activate(y1)))
ACTIVATE(n__and(n__isNatList(x0), y1)) → AND(isNatList(x0), y1)
ISNATLIST(n__cons(n__and(x0, x1), y1)) → AND(isNat(and(activate(x0), x1)), n__isNatList(activate(y1)))
ISNATILIST(n__cons(n__isNatList(x0), y1)) → AND(isNat(isNatList(x0)), n__isNatIList(activate(y1)))
ISNATLIST(n__cons(x0, y1)) → AND(isNat(x0), n__isNatList(activate(y1)))
ISNATILIST(n__cons(n__cons(x0, x1), y1)) → AND(isNat(cons(activate(x0), x1)), n__isNatIList(activate(y1)))
ISNATLIST(n__cons(n__0, y1)) → AND(isNat(0), n__isNatList(activate(y1)))
ACTIVATE(n__and(n__length(x0), y1)) → AND(length(activate(x0)), y1)
ACTIVATE(n__and(n__and(x0, x1), y1)) → AND(and(activate(x0), x1), y1)
ACTIVATE(n__and(X1, X2)) → ACTIVATE(X1)
ACTIVATE(n__s(X)) → ACTIVATE(X)
ACTIVATE(n__isNatList(X)) → ISNATLIST(X)
ISNATLIST(n__cons(n__isNatIList(x0), y1)) → AND(isNat(isNatIList(x0)), n__isNatList(activate(y1)))
ACTIVATE(n__and(n__isNat(x0), y1)) → AND(isNat(x0), y1)
ISNATLIST(n__cons(n__isNatList(x0), y1)) → AND(isNat(isNatList(x0)), n__isNatList(activate(y1)))
ISNATILIST(n__cons(n__and(x0, x1), y1)) → AND(isNat(and(activate(x0), x1)), n__isNatIList(activate(y1)))
ISNATLIST(n__cons(n__s(x0), y1)) → AND(isNat(s(activate(x0))), n__isNatList(activate(y1)))
ISNATLIST(n__cons(n__isNat(x0), y1)) → AND(isNat(isNat(x0)), n__isNatList(activate(y1)))
ACTIVATE(n__and(n__cons(x0, x1), y1)) → AND(cons(activate(x0), x1), y1)
ISNAT(n__s(n__isNatIList(x0))) → ISNAT(isNatIList(x0))
ISNAT(n__s(n__isNat(x0))) → ISNAT(isNat(x0))
ISNATILIST(n__cons(n__length(x0), y1)) → AND(isNat(length(activate(x0))), n__isNatIList(activate(y1)))
ISNAT(n__s(n__cons(x0, x1))) → ISNAT(cons(activate(x0), x1))
ACTIVATE(n__and(n__s(x0), y1)) → AND(s(activate(x0)), y1)
ISNAT(n__s(V1)) → ACTIVATE(V1)
AND(tt, X) → ACTIVATE(X)
ISNATILIST(n__cons(n__nil, y1)) → AND(isNat(nil), n__isNatIList(activate(y1)))
ISNATILIST(n__cons(n__s(x0), y1)) → AND(isNat(s(activate(x0))), n__isNatIList(activate(y1)))
ISNAT(n__s(n__isNatList(x0))) → ISNAT(isNatList(x0))
ISNATILIST(n__cons(n__isNatIList(x0), y1)) → AND(isNat(isNatIList(x0)), n__isNatIList(activate(y1)))
ISNATLIST(n__cons(n__cons(x0, x1), y1)) → AND(isNat(cons(activate(x0), x1)), n__isNatList(activate(y1)))
ACTIVATE(n__and(x0, y1)) → AND(x0, y1)
ISNATILIST(n__cons(n__zeros, y1)) → AND(isNat(zeros), n__isNatIList(activate(y1)))
ISNATILIST(n__cons(x0, y1)) → AND(isNat(x0), n__isNatIList(activate(y1)))
ISNAT(n__s(n__and(x0, x1))) → ISNAT(and(activate(x0), x1))
ISNAT(n__s(n__take(x0, x1))) → ISNAT(take(activate(x0), activate(x1)))
ISNATILIST(n__cons(n__isNat(x0), y1)) → AND(isNat(isNat(x0)), n__isNatIList(activate(y1)))
ACTIVATE(n__isNat(X)) → ISNAT(X)
ISNATILIST(n__cons(n__0, y1)) → AND(isNat(0), n__isNatIList(activate(y1)))
ISNATLIST(n__cons(n__nil, y1)) → AND(isNat(nil), n__isNatList(activate(y1)))
ACTIVATE(n__isNatIList(X)) → ISNATILIST(X)
ISNAT(n__s(n__length(x0))) → ISNAT(length(activate(x0)))
ISNAT(n__s(x0)) → ISNAT(x0)
ACTIVATE(n__and(n__isNatIList(x0), y1)) → AND(isNatIList(x0), y1)
ISNATLIST(n__cons(n__zeros, y1)) → AND(isNat(zeros), n__isNatList(activate(y1)))
The TRS R consists of the following rules:
zeros → cons(0, n__zeros)
U11(tt, L) → s(length(activate(L)))
U21(tt) → nil
U31(tt, IL, M, N) → cons(activate(N), n__take(activate(M), activate(IL)))
and(tt, X) → activate(X)
isNat(n__0) → tt
isNat(n__length(V1)) → isNatList(activate(V1))
isNat(n__s(V1)) → isNat(activate(V1))
isNatIList(V) → isNatList(activate(V))
isNatIList(n__zeros) → tt
isNatIList(n__cons(V1, V2)) → and(isNat(activate(V1)), n__isNatIList(activate(V2)))
isNatList(n__nil) → tt
isNatList(n__cons(V1, V2)) → and(isNat(activate(V1)), n__isNatList(activate(V2)))
isNatList(n__take(V1, V2)) → and(isNat(activate(V1)), n__isNatIList(activate(V2)))
length(nil) → 0
length(cons(N, L)) → U11(and(isNatList(activate(L)), n__isNat(N)), activate(L))
take(0, IL) → U21(isNatIList(IL))
take(s(M), cons(N, IL)) → U31(and(isNatIList(activate(IL)), n__and(n__isNat(M), n__isNat(N))), activate(IL), M, N)
zeros → n__zeros
take(X1, X2) → n__take(X1, X2)
0 → n__0
length(X) → n__length(X)
s(X) → n__s(X)
cons(X1, X2) → n__cons(X1, X2)
isNatIList(X) → n__isNatIList(X)
nil → n__nil
isNatList(X) → n__isNatList(X)
isNat(X) → n__isNat(X)
and(X1, X2) → n__and(X1, X2)
activate(n__zeros) → zeros
activate(n__take(X1, X2)) → take(activate(X1), activate(X2))
activate(n__0) → 0
activate(n__length(X)) → length(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(n__isNatIList(X)) → isNatIList(X)
activate(n__nil) → nil
activate(n__isNatList(X)) → isNatList(X)
activate(n__isNat(X)) → isNat(X)
activate(n__and(X1, X2)) → and(activate(X1), X2)
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].
The following pairs can be oriented strictly and are deleted.
ISNATILIST(n__cons(n__nil, y1)) → AND(isNat(nil), n__isNatIList(activate(y1)))
ISNATLIST(n__cons(n__nil, y1)) → AND(isNat(nil), n__isNatList(activate(y1)))
The remaining pairs can at least be oriented weakly.
ISNAT(n__s(n__s(x0))) → ISNAT(s(activate(x0)))
ISNATLIST(n__cons(n__length(x0), y1)) → AND(isNat(length(activate(x0))), n__isNatList(activate(y1)))
ACTIVATE(n__and(n__isNatList(x0), y1)) → AND(isNatList(x0), y1)
ISNATLIST(n__cons(n__and(x0, x1), y1)) → AND(isNat(and(activate(x0), x1)), n__isNatList(activate(y1)))
ISNATILIST(n__cons(n__isNatList(x0), y1)) → AND(isNat(isNatList(x0)), n__isNatIList(activate(y1)))
ISNATLIST(n__cons(x0, y1)) → AND(isNat(x0), n__isNatList(activate(y1)))
ISNATILIST(n__cons(n__cons(x0, x1), y1)) → AND(isNat(cons(activate(x0), x1)), n__isNatIList(activate(y1)))
ISNATLIST(n__cons(n__0, y1)) → AND(isNat(0), n__isNatList(activate(y1)))
ACTIVATE(n__and(n__length(x0), y1)) → AND(length(activate(x0)), y1)
ACTIVATE(n__and(n__and(x0, x1), y1)) → AND(and(activate(x0), x1), y1)
ACTIVATE(n__and(X1, X2)) → ACTIVATE(X1)
ACTIVATE(n__s(X)) → ACTIVATE(X)
ACTIVATE(n__isNatList(X)) → ISNATLIST(X)
ISNATLIST(n__cons(n__isNatIList(x0), y1)) → AND(isNat(isNatIList(x0)), n__isNatList(activate(y1)))
ACTIVATE(n__and(n__isNat(x0), y1)) → AND(isNat(x0), y1)
ISNATLIST(n__cons(n__isNatList(x0), y1)) → AND(isNat(isNatList(x0)), n__isNatList(activate(y1)))
ISNATILIST(n__cons(n__and(x0, x1), y1)) → AND(isNat(and(activate(x0), x1)), n__isNatIList(activate(y1)))
ISNATLIST(n__cons(n__s(x0), y1)) → AND(isNat(s(activate(x0))), n__isNatList(activate(y1)))
ISNATLIST(n__cons(n__isNat(x0), y1)) → AND(isNat(isNat(x0)), n__isNatList(activate(y1)))
ACTIVATE(n__and(n__cons(x0, x1), y1)) → AND(cons(activate(x0), x1), y1)
ISNAT(n__s(n__isNatIList(x0))) → ISNAT(isNatIList(x0))
ISNAT(n__s(n__isNat(x0))) → ISNAT(isNat(x0))
ISNATILIST(n__cons(n__length(x0), y1)) → AND(isNat(length(activate(x0))), n__isNatIList(activate(y1)))
ISNAT(n__s(n__cons(x0, x1))) → ISNAT(cons(activate(x0), x1))
ACTIVATE(n__and(n__s(x0), y1)) → AND(s(activate(x0)), y1)
ISNAT(n__s(V1)) → ACTIVATE(V1)
AND(tt, X) → ACTIVATE(X)
ISNATILIST(n__cons(n__s(x0), y1)) → AND(isNat(s(activate(x0))), n__isNatIList(activate(y1)))
ISNAT(n__s(n__isNatList(x0))) → ISNAT(isNatList(x0))
ISNATILIST(n__cons(n__isNatIList(x0), y1)) → AND(isNat(isNatIList(x0)), n__isNatIList(activate(y1)))
ISNATLIST(n__cons(n__cons(x0, x1), y1)) → AND(isNat(cons(activate(x0), x1)), n__isNatList(activate(y1)))
ACTIVATE(n__and(x0, y1)) → AND(x0, y1)
ISNATILIST(n__cons(n__zeros, y1)) → AND(isNat(zeros), n__isNatIList(activate(y1)))
ISNATILIST(n__cons(x0, y1)) → AND(isNat(x0), n__isNatIList(activate(y1)))
ISNAT(n__s(n__and(x0, x1))) → ISNAT(and(activate(x0), x1))
ISNAT(n__s(n__take(x0, x1))) → ISNAT(take(activate(x0), activate(x1)))
ISNATILIST(n__cons(n__isNat(x0), y1)) → AND(isNat(isNat(x0)), n__isNatIList(activate(y1)))
ACTIVATE(n__isNat(X)) → ISNAT(X)
ISNATILIST(n__cons(n__0, y1)) → AND(isNat(0), n__isNatIList(activate(y1)))
ACTIVATE(n__isNatIList(X)) → ISNATILIST(X)
ISNAT(n__s(n__length(x0))) → ISNAT(length(activate(x0)))
ISNAT(n__s(x0)) → ISNAT(x0)
ACTIVATE(n__and(n__isNatIList(x0), y1)) → AND(isNatIList(x0), y1)
ISNATLIST(n__cons(n__zeros, y1)) → AND(isNat(zeros), n__isNatList(activate(y1)))
Used ordering: Polynomial interpretation [25]:
POL(0) = 0
POL(ACTIVATE(x1)) = x1
POL(AND(x1, x2)) = x2
POL(ISNAT(x1)) = x1
POL(ISNATILIST(x1)) = x1
POL(ISNATLIST(x1)) = x1
POL(U11(x1, x2)) = x2
POL(U21(x1)) = 1
POL(U31(x1, x2, x3, x4)) = 1 + x2 + x3 + x4
POL(activate(x1)) = x1
POL(and(x1, x2)) = x1 + x2
POL(cons(x1, x2)) = x1 + x2
POL(isNat(x1)) = x1
POL(isNatIList(x1)) = x1
POL(isNatList(x1)) = x1
POL(length(x1)) = x1
POL(n__0) = 0
POL(n__and(x1, x2)) = x1 + x2
POL(n__cons(x1, x2)) = x1 + x2
POL(n__isNat(x1)) = x1
POL(n__isNatIList(x1)) = x1
POL(n__isNatList(x1)) = x1
POL(n__length(x1)) = x1
POL(n__nil) = 1
POL(n__s(x1)) = x1
POL(n__take(x1, x2)) = 1 + x1 + x2
POL(n__zeros) = 0
POL(nil) = 1
POL(s(x1)) = x1
POL(take(x1, x2)) = 1 + x1 + x2
POL(tt) = 0
POL(zeros) = 0
The following usable rules [17] were oriented:
isNatIList(X) → n__isNatIList(X)
cons(X1, X2) → n__cons(X1, X2)
isNatList(X) → n__isNatList(X)
nil → n__nil
and(X1, X2) → n__and(X1, X2)
isNat(X) → n__isNat(X)
activate(n__take(X1, X2)) → take(activate(X1), activate(X2))
activate(n__zeros) → zeros
take(0, IL) → U21(isNatIList(IL))
length(cons(N, L)) → U11(and(isNatList(activate(L)), n__isNat(N)), activate(L))
zeros → n__zeros
take(s(M), cons(N, IL)) → U31(and(isNatIList(activate(IL)), n__and(n__isNat(M), n__isNat(N))), activate(IL), M, N)
0 → n__0
take(X1, X2) → n__take(X1, X2)
s(X) → n__s(X)
length(X) → n__length(X)
activate(X) → X
activate(n__0) → 0
activate(n__length(X)) → length(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
isNatList(n__cons(V1, V2)) → and(isNat(activate(V1)), n__isNatList(activate(V2)))
isNatIList(V) → isNatList(activate(V))
activate(n__isNat(X)) → isNat(X)
activate(n__and(X1, X2)) → and(activate(X1), X2)
isNat(n__s(V1)) → isNat(activate(V1))
and(tt, X) → activate(X)
isNatIList(n__cons(V1, V2)) → and(isNat(activate(V1)), n__isNatIList(activate(V2)))
isNatList(n__take(V1, V2)) → and(isNat(activate(V1)), n__isNatIList(activate(V2)))
activate(n__isNatIList(X)) → isNatIList(X)
isNat(n__length(V1)) → isNatList(activate(V1))
activate(n__isNatList(X)) → isNatList(X)
activate(n__nil) → nil
isNat(n__0) → tt
U31(tt, IL, M, N) → cons(activate(N), n__take(activate(M), activate(IL)))
U21(tt) → nil
U11(tt, L) → s(length(activate(L)))
zeros → cons(0, n__zeros)
length(nil) → 0
isNatList(n__nil) → tt
isNatIList(n__zeros) → tt
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDPOrderProof
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
ISNAT(n__s(n__s(x0))) → ISNAT(s(activate(x0)))
ISNATLIST(n__cons(n__length(x0), y1)) → AND(isNat(length(activate(x0))), n__isNatList(activate(y1)))
ACTIVATE(n__and(n__isNatList(x0), y1)) → AND(isNatList(x0), y1)
ISNATLIST(n__cons(n__and(x0, x1), y1)) → AND(isNat(and(activate(x0), x1)), n__isNatList(activate(y1)))
ISNATLIST(n__cons(x0, y1)) → AND(isNat(x0), n__isNatList(activate(y1)))
ISNATILIST(n__cons(n__isNatList(x0), y1)) → AND(isNat(isNatList(x0)), n__isNatIList(activate(y1)))
ISNATLIST(n__cons(n__0, y1)) → AND(isNat(0), n__isNatList(activate(y1)))
ISNATILIST(n__cons(n__cons(x0, x1), y1)) → AND(isNat(cons(activate(x0), x1)), n__isNatIList(activate(y1)))
ACTIVATE(n__and(n__length(x0), y1)) → AND(length(activate(x0)), y1)
ACTIVATE(n__and(n__and(x0, x1), y1)) → AND(and(activate(x0), x1), y1)
ACTIVATE(n__s(X)) → ACTIVATE(X)
ACTIVATE(n__and(X1, X2)) → ACTIVATE(X1)
ACTIVATE(n__isNatList(X)) → ISNATLIST(X)
ISNATLIST(n__cons(n__isNatIList(x0), y1)) → AND(isNat(isNatIList(x0)), n__isNatList(activate(y1)))
ACTIVATE(n__and(n__isNat(x0), y1)) → AND(isNat(x0), y1)
ISNATLIST(n__cons(n__isNatList(x0), y1)) → AND(isNat(isNatList(x0)), n__isNatList(activate(y1)))
ISNATILIST(n__cons(n__and(x0, x1), y1)) → AND(isNat(and(activate(x0), x1)), n__isNatIList(activate(y1)))
ISNATLIST(n__cons(n__s(x0), y1)) → AND(isNat(s(activate(x0))), n__isNatList(activate(y1)))
ISNATLIST(n__cons(n__isNat(x0), y1)) → AND(isNat(isNat(x0)), n__isNatList(activate(y1)))
ACTIVATE(n__and(n__cons(x0, x1), y1)) → AND(cons(activate(x0), x1), y1)
ISNAT(n__s(n__isNatIList(x0))) → ISNAT(isNatIList(x0))
ISNAT(n__s(n__isNat(x0))) → ISNAT(isNat(x0))
ISNATILIST(n__cons(n__length(x0), y1)) → AND(isNat(length(activate(x0))), n__isNatIList(activate(y1)))
ISNAT(n__s(n__cons(x0, x1))) → ISNAT(cons(activate(x0), x1))
ACTIVATE(n__and(n__s(x0), y1)) → AND(s(activate(x0)), y1)
AND(tt, X) → ACTIVATE(X)
ISNAT(n__s(V1)) → ACTIVATE(V1)
ISNATILIST(n__cons(n__s(x0), y1)) → AND(isNat(s(activate(x0))), n__isNatIList(activate(y1)))
ISNATILIST(n__cons(n__isNatIList(x0), y1)) → AND(isNat(isNatIList(x0)), n__isNatIList(activate(y1)))
ISNAT(n__s(n__isNatList(x0))) → ISNAT(isNatList(x0))
ACTIVATE(n__and(x0, y1)) → AND(x0, y1)
ISNATLIST(n__cons(n__cons(x0, x1), y1)) → AND(isNat(cons(activate(x0), x1)), n__isNatList(activate(y1)))
ISNATILIST(n__cons(n__zeros, y1)) → AND(isNat(zeros), n__isNatIList(activate(y1)))
ISNATILIST(n__cons(x0, y1)) → AND(isNat(x0), n__isNatIList(activate(y1)))
ISNATILIST(n__cons(n__isNat(x0), y1)) → AND(isNat(isNat(x0)), n__isNatIList(activate(y1)))
ISNAT(n__s(n__take(x0, x1))) → ISNAT(take(activate(x0), activate(x1)))
ISNAT(n__s(n__and(x0, x1))) → ISNAT(and(activate(x0), x1))
ACTIVATE(n__isNat(X)) → ISNAT(X)
ISNAT(n__s(n__length(x0))) → ISNAT(length(activate(x0)))
ACTIVATE(n__isNatIList(X)) → ISNATILIST(X)
ISNATILIST(n__cons(n__0, y1)) → AND(isNat(0), n__isNatIList(activate(y1)))
ACTIVATE(n__and(n__isNatIList(x0), y1)) → AND(isNatIList(x0), y1)
ISNAT(n__s(x0)) → ISNAT(x0)
ISNATLIST(n__cons(n__zeros, y1)) → AND(isNat(zeros), n__isNatList(activate(y1)))
The TRS R consists of the following rules:
zeros → cons(0, n__zeros)
U11(tt, L) → s(length(activate(L)))
U21(tt) → nil
U31(tt, IL, M, N) → cons(activate(N), n__take(activate(M), activate(IL)))
and(tt, X) → activate(X)
isNat(n__0) → tt
isNat(n__length(V1)) → isNatList(activate(V1))
isNat(n__s(V1)) → isNat(activate(V1))
isNatIList(V) → isNatList(activate(V))
isNatIList(n__zeros) → tt
isNatIList(n__cons(V1, V2)) → and(isNat(activate(V1)), n__isNatIList(activate(V2)))
isNatList(n__nil) → tt
isNatList(n__cons(V1, V2)) → and(isNat(activate(V1)), n__isNatList(activate(V2)))
isNatList(n__take(V1, V2)) → and(isNat(activate(V1)), n__isNatIList(activate(V2)))
length(nil) → 0
length(cons(N, L)) → U11(and(isNatList(activate(L)), n__isNat(N)), activate(L))
take(0, IL) → U21(isNatIList(IL))
take(s(M), cons(N, IL)) → U31(and(isNatIList(activate(IL)), n__and(n__isNat(M), n__isNat(N))), activate(IL), M, N)
zeros → n__zeros
take(X1, X2) → n__take(X1, X2)
0 → n__0
length(X) → n__length(X)
s(X) → n__s(X)
cons(X1, X2) → n__cons(X1, X2)
isNatIList(X) → n__isNatIList(X)
nil → n__nil
isNatList(X) → n__isNatList(X)
isNat(X) → n__isNat(X)
and(X1, X2) → n__and(X1, X2)
activate(n__zeros) → zeros
activate(n__take(X1, X2)) → take(activate(X1), activate(X2))
activate(n__0) → 0
activate(n__length(X)) → length(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(n__isNatIList(X)) → isNatIList(X)
activate(n__nil) → nil
activate(n__isNatList(X)) → isNatList(X)
activate(n__isNat(X)) → isNat(X)
activate(n__and(X1, X2)) → and(activate(X1), X2)
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].
The following pairs can be oriented strictly and are deleted.
ISNATILIST(n__cons(n__zeros, y1)) → AND(isNat(zeros), n__isNatIList(activate(y1)))
ISNATLIST(n__cons(n__zeros, y1)) → AND(isNat(zeros), n__isNatList(activate(y1)))
The remaining pairs can at least be oriented weakly.
ISNAT(n__s(n__s(x0))) → ISNAT(s(activate(x0)))
ISNATLIST(n__cons(n__length(x0), y1)) → AND(isNat(length(activate(x0))), n__isNatList(activate(y1)))
ACTIVATE(n__and(n__isNatList(x0), y1)) → AND(isNatList(x0), y1)
ISNATLIST(n__cons(n__and(x0, x1), y1)) → AND(isNat(and(activate(x0), x1)), n__isNatList(activate(y1)))
ISNATLIST(n__cons(x0, y1)) → AND(isNat(x0), n__isNatList(activate(y1)))
ISNATILIST(n__cons(n__isNatList(x0), y1)) → AND(isNat(isNatList(x0)), n__isNatIList(activate(y1)))
ISNATLIST(n__cons(n__0, y1)) → AND(isNat(0), n__isNatList(activate(y1)))
ISNATILIST(n__cons(n__cons(x0, x1), y1)) → AND(isNat(cons(activate(x0), x1)), n__isNatIList(activate(y1)))
ACTIVATE(n__and(n__length(x0), y1)) → AND(length(activate(x0)), y1)
ACTIVATE(n__and(n__and(x0, x1), y1)) → AND(and(activate(x0), x1), y1)
ACTIVATE(n__s(X)) → ACTIVATE(X)
ACTIVATE(n__and(X1, X2)) → ACTIVATE(X1)
ACTIVATE(n__isNatList(X)) → ISNATLIST(X)
ISNATLIST(n__cons(n__isNatIList(x0), y1)) → AND(isNat(isNatIList(x0)), n__isNatList(activate(y1)))
ACTIVATE(n__and(n__isNat(x0), y1)) → AND(isNat(x0), y1)
ISNATLIST(n__cons(n__isNatList(x0), y1)) → AND(isNat(isNatList(x0)), n__isNatList(activate(y1)))
ISNATILIST(n__cons(n__and(x0, x1), y1)) → AND(isNat(and(activate(x0), x1)), n__isNatIList(activate(y1)))
ISNATLIST(n__cons(n__s(x0), y1)) → AND(isNat(s(activate(x0))), n__isNatList(activate(y1)))
ISNATLIST(n__cons(n__isNat(x0), y1)) → AND(isNat(isNat(x0)), n__isNatList(activate(y1)))
ACTIVATE(n__and(n__cons(x0, x1), y1)) → AND(cons(activate(x0), x1), y1)
ISNAT(n__s(n__isNatIList(x0))) → ISNAT(isNatIList(x0))
ISNAT(n__s(n__isNat(x0))) → ISNAT(isNat(x0))
ISNATILIST(n__cons(n__length(x0), y1)) → AND(isNat(length(activate(x0))), n__isNatIList(activate(y1)))
ISNAT(n__s(n__cons(x0, x1))) → ISNAT(cons(activate(x0), x1))
ACTIVATE(n__and(n__s(x0), y1)) → AND(s(activate(x0)), y1)
AND(tt, X) → ACTIVATE(X)
ISNAT(n__s(V1)) → ACTIVATE(V1)
ISNATILIST(n__cons(n__s(x0), y1)) → AND(isNat(s(activate(x0))), n__isNatIList(activate(y1)))
ISNATILIST(n__cons(n__isNatIList(x0), y1)) → AND(isNat(isNatIList(x0)), n__isNatIList(activate(y1)))
ISNAT(n__s(n__isNatList(x0))) → ISNAT(isNatList(x0))
ACTIVATE(n__and(x0, y1)) → AND(x0, y1)
ISNATLIST(n__cons(n__cons(x0, x1), y1)) → AND(isNat(cons(activate(x0), x1)), n__isNatList(activate(y1)))
ISNATILIST(n__cons(x0, y1)) → AND(isNat(x0), n__isNatIList(activate(y1)))
ISNATILIST(n__cons(n__isNat(x0), y1)) → AND(isNat(isNat(x0)), n__isNatIList(activate(y1)))
ISNAT(n__s(n__take(x0, x1))) → ISNAT(take(activate(x0), activate(x1)))
ISNAT(n__s(n__and(x0, x1))) → ISNAT(and(activate(x0), x1))
ACTIVATE(n__isNat(X)) → ISNAT(X)
ISNAT(n__s(n__length(x0))) → ISNAT(length(activate(x0)))
ACTIVATE(n__isNatIList(X)) → ISNATILIST(X)
ISNATILIST(n__cons(n__0, y1)) → AND(isNat(0), n__isNatIList(activate(y1)))
ACTIVATE(n__and(n__isNatIList(x0), y1)) → AND(isNatIList(x0), y1)
ISNAT(n__s(x0)) → ISNAT(x0)
Used ordering: Polynomial interpretation with max and min functions [25]:
POL(0) = 0
POL(ACTIVATE(x1)) = x1
POL(AND(x1, x2)) = x2
POL(ISNAT(x1)) = x1
POL(ISNATILIST(x1)) = x1
POL(ISNATLIST(x1)) = x1
POL(U11(x1, x2)) = x2
POL(U21(x1)) = 0
POL(U31(x1, x2, x3, x4)) = x2 + x3 + x4
POL(activate(x1)) = x1
POL(and(x1, x2)) = x1 + x2
POL(cons(x1, x2)) = x1 + x2
POL(isNat(x1)) = x1
POL(isNatIList(x1)) = x1
POL(isNatList(x1)) = x1
POL(length(x1)) = x1
POL(n__0) = 0
POL(n__and(x1, x2)) = x1 + x2
POL(n__cons(x1, x2)) = x1 + x2
POL(n__isNat(x1)) = x1
POL(n__isNatIList(x1)) = x1
POL(n__isNatList(x1)) = x1
POL(n__length(x1)) = x1
POL(n__nil) = 0
POL(n__s(x1)) = x1
POL(n__take(x1, x2)) = x1 + x2
POL(n__zeros) = 1
POL(nil) = 0
POL(s(x1)) = x1
POL(take(x1, x2)) = x1 + x2
POL(tt) = 0
POL(zeros) = 1
The following usable rules [17] were oriented:
isNatIList(X) → n__isNatIList(X)
cons(X1, X2) → n__cons(X1, X2)
isNatList(X) → n__isNatList(X)
nil → n__nil
and(X1, X2) → n__and(X1, X2)
isNat(X) → n__isNat(X)
activate(n__take(X1, X2)) → take(activate(X1), activate(X2))
activate(n__zeros) → zeros
take(0, IL) → U21(isNatIList(IL))
length(cons(N, L)) → U11(and(isNatList(activate(L)), n__isNat(N)), activate(L))
zeros → n__zeros
take(s(M), cons(N, IL)) → U31(and(isNatIList(activate(IL)), n__and(n__isNat(M), n__isNat(N))), activate(IL), M, N)
0 → n__0
take(X1, X2) → n__take(X1, X2)
s(X) → n__s(X)
length(X) → n__length(X)
activate(X) → X
activate(n__0) → 0
activate(n__length(X)) → length(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
isNatList(n__cons(V1, V2)) → and(isNat(activate(V1)), n__isNatList(activate(V2)))
isNatIList(V) → isNatList(activate(V))
activate(n__isNat(X)) → isNat(X)
activate(n__and(X1, X2)) → and(activate(X1), X2)
isNat(n__s(V1)) → isNat(activate(V1))
and(tt, X) → activate(X)
isNatIList(n__cons(V1, V2)) → and(isNat(activate(V1)), n__isNatIList(activate(V2)))
isNatList(n__take(V1, V2)) → and(isNat(activate(V1)), n__isNatIList(activate(V2)))
activate(n__isNatIList(X)) → isNatIList(X)
isNat(n__length(V1)) → isNatList(activate(V1))
activate(n__isNatList(X)) → isNatList(X)
activate(n__nil) → nil
isNat(n__0) → tt
U31(tt, IL, M, N) → cons(activate(N), n__take(activate(M), activate(IL)))
U21(tt) → nil
U11(tt, L) → s(length(activate(L)))
zeros → cons(0, n__zeros)
length(nil) → 0
isNatList(n__nil) → tt
isNatIList(n__zeros) → tt
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDPOrderProof
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
ISNAT(n__s(n__s(x0))) → ISNAT(s(activate(x0)))
ISNATLIST(n__cons(n__length(x0), y1)) → AND(isNat(length(activate(x0))), n__isNatList(activate(y1)))
ACTIVATE(n__and(n__isNatList(x0), y1)) → AND(isNatList(x0), y1)
ISNATLIST(n__cons(n__and(x0, x1), y1)) → AND(isNat(and(activate(x0), x1)), n__isNatList(activate(y1)))
ISNATILIST(n__cons(n__isNatList(x0), y1)) → AND(isNat(isNatList(x0)), n__isNatIList(activate(y1)))
ISNATLIST(n__cons(x0, y1)) → AND(isNat(x0), n__isNatList(activate(y1)))
ISNATILIST(n__cons(n__cons(x0, x1), y1)) → AND(isNat(cons(activate(x0), x1)), n__isNatIList(activate(y1)))
ISNATLIST(n__cons(n__0, y1)) → AND(isNat(0), n__isNatList(activate(y1)))
ACTIVATE(n__and(n__length(x0), y1)) → AND(length(activate(x0)), y1)
ACTIVATE(n__and(n__and(x0, x1), y1)) → AND(and(activate(x0), x1), y1)
ACTIVATE(n__and(X1, X2)) → ACTIVATE(X1)
ACTIVATE(n__s(X)) → ACTIVATE(X)
ACTIVATE(n__isNatList(X)) → ISNATLIST(X)
ISNATLIST(n__cons(n__isNatIList(x0), y1)) → AND(isNat(isNatIList(x0)), n__isNatList(activate(y1)))
ACTIVATE(n__and(n__isNat(x0), y1)) → AND(isNat(x0), y1)
ISNATLIST(n__cons(n__isNatList(x0), y1)) → AND(isNat(isNatList(x0)), n__isNatList(activate(y1)))
ISNATILIST(n__cons(n__and(x0, x1), y1)) → AND(isNat(and(activate(x0), x1)), n__isNatIList(activate(y1)))
ISNATLIST(n__cons(n__s(x0), y1)) → AND(isNat(s(activate(x0))), n__isNatList(activate(y1)))
ISNATLIST(n__cons(n__isNat(x0), y1)) → AND(isNat(isNat(x0)), n__isNatList(activate(y1)))
ACTIVATE(n__and(n__cons(x0, x1), y1)) → AND(cons(activate(x0), x1), y1)
ISNAT(n__s(n__isNatIList(x0))) → ISNAT(isNatIList(x0))
ISNAT(n__s(n__isNat(x0))) → ISNAT(isNat(x0))
ISNATILIST(n__cons(n__length(x0), y1)) → AND(isNat(length(activate(x0))), n__isNatIList(activate(y1)))
ISNAT(n__s(n__cons(x0, x1))) → ISNAT(cons(activate(x0), x1))
ACTIVATE(n__and(n__s(x0), y1)) → AND(s(activate(x0)), y1)
ISNAT(n__s(V1)) → ACTIVATE(V1)
AND(tt, X) → ACTIVATE(X)
ISNATILIST(n__cons(n__s(x0), y1)) → AND(isNat(s(activate(x0))), n__isNatIList(activate(y1)))
ISNAT(n__s(n__isNatList(x0))) → ISNAT(isNatList(x0))
ISNATILIST(n__cons(n__isNatIList(x0), y1)) → AND(isNat(isNatIList(x0)), n__isNatIList(activate(y1)))
ISNATLIST(n__cons(n__cons(x0, x1), y1)) → AND(isNat(cons(activate(x0), x1)), n__isNatList(activate(y1)))
ACTIVATE(n__and(x0, y1)) → AND(x0, y1)
ISNATILIST(n__cons(x0, y1)) → AND(isNat(x0), n__isNatIList(activate(y1)))
ISNAT(n__s(n__and(x0, x1))) → ISNAT(and(activate(x0), x1))
ISNAT(n__s(n__take(x0, x1))) → ISNAT(take(activate(x0), activate(x1)))
ISNATILIST(n__cons(n__isNat(x0), y1)) → AND(isNat(isNat(x0)), n__isNatIList(activate(y1)))
ACTIVATE(n__isNat(X)) → ISNAT(X)
ISNATILIST(n__cons(n__0, y1)) → AND(isNat(0), n__isNatIList(activate(y1)))
ACTIVATE(n__isNatIList(X)) → ISNATILIST(X)
ISNAT(n__s(n__length(x0))) → ISNAT(length(activate(x0)))
ISNAT(n__s(x0)) → ISNAT(x0)
ACTIVATE(n__and(n__isNatIList(x0), y1)) → AND(isNatIList(x0), y1)
The TRS R consists of the following rules:
zeros → cons(0, n__zeros)
U11(tt, L) → s(length(activate(L)))
U21(tt) → nil
U31(tt, IL, M, N) → cons(activate(N), n__take(activate(M), activate(IL)))
and(tt, X) → activate(X)
isNat(n__0) → tt
isNat(n__length(V1)) → isNatList(activate(V1))
isNat(n__s(V1)) → isNat(activate(V1))
isNatIList(V) → isNatList(activate(V))
isNatIList(n__zeros) → tt
isNatIList(n__cons(V1, V2)) → and(isNat(activate(V1)), n__isNatIList(activate(V2)))
isNatList(n__nil) → tt
isNatList(n__cons(V1, V2)) → and(isNat(activate(V1)), n__isNatList(activate(V2)))
isNatList(n__take(V1, V2)) → and(isNat(activate(V1)), n__isNatIList(activate(V2)))
length(nil) → 0
length(cons(N, L)) → U11(and(isNatList(activate(L)), n__isNat(N)), activate(L))
take(0, IL) → U21(isNatIList(IL))
take(s(M), cons(N, IL)) → U31(and(isNatIList(activate(IL)), n__and(n__isNat(M), n__isNat(N))), activate(IL), M, N)
zeros → n__zeros
take(X1, X2) → n__take(X1, X2)
0 → n__0
length(X) → n__length(X)
s(X) → n__s(X)
cons(X1, X2) → n__cons(X1, X2)
isNatIList(X) → n__isNatIList(X)
nil → n__nil
isNatList(X) → n__isNatList(X)
isNat(X) → n__isNat(X)
and(X1, X2) → n__and(X1, X2)
activate(n__zeros) → zeros
activate(n__take(X1, X2)) → take(activate(X1), activate(X2))
activate(n__0) → 0
activate(n__length(X)) → length(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(n__isNatIList(X)) → isNatIList(X)
activate(n__nil) → nil
activate(n__isNatList(X)) → isNatList(X)
activate(n__isNat(X)) → isNat(X)
activate(n__and(X1, X2)) → and(activate(X1), X2)
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].
The following pairs can be oriented strictly and are deleted.
ISNATLIST(n__cons(n__length(x0), y1)) → AND(isNat(length(activate(x0))), n__isNatList(activate(y1)))
ACTIVATE(n__and(n__length(x0), y1)) → AND(length(activate(x0)), y1)
ISNATILIST(n__cons(n__length(x0), y1)) → AND(isNat(length(activate(x0))), n__isNatIList(activate(y1)))
The remaining pairs can at least be oriented weakly.
ISNAT(n__s(n__s(x0))) → ISNAT(s(activate(x0)))
ACTIVATE(n__and(n__isNatList(x0), y1)) → AND(isNatList(x0), y1)
ISNATLIST(n__cons(n__and(x0, x1), y1)) → AND(isNat(and(activate(x0), x1)), n__isNatList(activate(y1)))
ISNATILIST(n__cons(n__isNatList(x0), y1)) → AND(isNat(isNatList(x0)), n__isNatIList(activate(y1)))
ISNATLIST(n__cons(x0, y1)) → AND(isNat(x0), n__isNatList(activate(y1)))
ISNATILIST(n__cons(n__cons(x0, x1), y1)) → AND(isNat(cons(activate(x0), x1)), n__isNatIList(activate(y1)))
ISNATLIST(n__cons(n__0, y1)) → AND(isNat(0), n__isNatList(activate(y1)))
ACTIVATE(n__and(n__and(x0, x1), y1)) → AND(and(activate(x0), x1), y1)
ACTIVATE(n__and(X1, X2)) → ACTIVATE(X1)
ACTIVATE(n__s(X)) → ACTIVATE(X)
ACTIVATE(n__isNatList(X)) → ISNATLIST(X)
ISNATLIST(n__cons(n__isNatIList(x0), y1)) → AND(isNat(isNatIList(x0)), n__isNatList(activate(y1)))
ACTIVATE(n__and(n__isNat(x0), y1)) → AND(isNat(x0), y1)
ISNATLIST(n__cons(n__isNatList(x0), y1)) → AND(isNat(isNatList(x0)), n__isNatList(activate(y1)))
ISNATILIST(n__cons(n__and(x0, x1), y1)) → AND(isNat(and(activate(x0), x1)), n__isNatIList(activate(y1)))
ISNATLIST(n__cons(n__s(x0), y1)) → AND(isNat(s(activate(x0))), n__isNatList(activate(y1)))
ISNATLIST(n__cons(n__isNat(x0), y1)) → AND(isNat(isNat(x0)), n__isNatList(activate(y1)))
ACTIVATE(n__and(n__cons(x0, x1), y1)) → AND(cons(activate(x0), x1), y1)
ISNAT(n__s(n__isNatIList(x0))) → ISNAT(isNatIList(x0))
ISNAT(n__s(n__isNat(x0))) → ISNAT(isNat(x0))
ISNAT(n__s(n__cons(x0, x1))) → ISNAT(cons(activate(x0), x1))
ACTIVATE(n__and(n__s(x0), y1)) → AND(s(activate(x0)), y1)
ISNAT(n__s(V1)) → ACTIVATE(V1)
AND(tt, X) → ACTIVATE(X)
ISNATILIST(n__cons(n__s(x0), y1)) → AND(isNat(s(activate(x0))), n__isNatIList(activate(y1)))
ISNAT(n__s(n__isNatList(x0))) → ISNAT(isNatList(x0))
ISNATILIST(n__cons(n__isNatIList(x0), y1)) → AND(isNat(isNatIList(x0)), n__isNatIList(activate(y1)))
ISNATLIST(n__cons(n__cons(x0, x1), y1)) → AND(isNat(cons(activate(x0), x1)), n__isNatList(activate(y1)))
ACTIVATE(n__and(x0, y1)) → AND(x0, y1)
ISNATILIST(n__cons(x0, y1)) → AND(isNat(x0), n__isNatIList(activate(y1)))
ISNAT(n__s(n__and(x0, x1))) → ISNAT(and(activate(x0), x1))
ISNAT(n__s(n__take(x0, x1))) → ISNAT(take(activate(x0), activate(x1)))
ISNATILIST(n__cons(n__isNat(x0), y1)) → AND(isNat(isNat(x0)), n__isNatIList(activate(y1)))
ACTIVATE(n__isNat(X)) → ISNAT(X)
ISNATILIST(n__cons(n__0, y1)) → AND(isNat(0), n__isNatIList(activate(y1)))
ACTIVATE(n__isNatIList(X)) → ISNATILIST(X)
ISNAT(n__s(n__length(x0))) → ISNAT(length(activate(x0)))
ISNAT(n__s(x0)) → ISNAT(x0)
ACTIVATE(n__and(n__isNatIList(x0), y1)) → AND(isNatIList(x0), y1)
Used ordering: Polynomial interpretation [25]:
POL(0) = 0
POL(ACTIVATE(x1)) = x1
POL(AND(x1, x2)) = x2
POL(ISNAT(x1)) = x1
POL(ISNATILIST(x1)) = x1
POL(ISNATLIST(x1)) = x1
POL(U11(x1, x2)) = 1 + x2
POL(U21(x1)) = 0
POL(U31(x1, x2, x3, x4)) = x2 + x3 + x4
POL(activate(x1)) = x1
POL(and(x1, x2)) = x1 + x2
POL(cons(x1, x2)) = x1 + x2
POL(isNat(x1)) = x1
POL(isNatIList(x1)) = x1
POL(isNatList(x1)) = x1
POL(length(x1)) = 1 + x1
POL(n__0) = 0
POL(n__and(x1, x2)) = x1 + x2
POL(n__cons(x1, x2)) = x1 + x2
POL(n__isNat(x1)) = x1
POL(n__isNatIList(x1)) = x1
POL(n__isNatList(x1)) = x1
POL(n__length(x1)) = 1 + x1
POL(n__nil) = 0
POL(n__s(x1)) = x1
POL(n__take(x1, x2)) = x1 + x2
POL(n__zeros) = 0
POL(nil) = 0
POL(s(x1)) = x1
POL(take(x1, x2)) = x1 + x2
POL(tt) = 0
POL(zeros) = 0
The following usable rules [17] were oriented:
isNatIList(X) → n__isNatIList(X)
cons(X1, X2) → n__cons(X1, X2)
isNatList(X) → n__isNatList(X)
nil → n__nil
and(X1, X2) → n__and(X1, X2)
isNat(X) → n__isNat(X)
activate(n__take(X1, X2)) → take(activate(X1), activate(X2))
activate(n__zeros) → zeros
take(0, IL) → U21(isNatIList(IL))
length(cons(N, L)) → U11(and(isNatList(activate(L)), n__isNat(N)), activate(L))
zeros → n__zeros
take(s(M), cons(N, IL)) → U31(and(isNatIList(activate(IL)), n__and(n__isNat(M), n__isNat(N))), activate(IL), M, N)
0 → n__0
take(X1, X2) → n__take(X1, X2)
s(X) → n__s(X)
length(X) → n__length(X)
activate(X) → X
activate(n__0) → 0
activate(n__length(X)) → length(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
isNatList(n__cons(V1, V2)) → and(isNat(activate(V1)), n__isNatList(activate(V2)))
isNatIList(V) → isNatList(activate(V))
activate(n__isNat(X)) → isNat(X)
activate(n__and(X1, X2)) → and(activate(X1), X2)
isNat(n__s(V1)) → isNat(activate(V1))
and(tt, X) → activate(X)
isNatIList(n__cons(V1, V2)) → and(isNat(activate(V1)), n__isNatIList(activate(V2)))
isNatList(n__take(V1, V2)) → and(isNat(activate(V1)), n__isNatIList(activate(V2)))
activate(n__isNatIList(X)) → isNatIList(X)
isNat(n__length(V1)) → isNatList(activate(V1))
activate(n__isNatList(X)) → isNatList(X)
activate(n__nil) → nil
isNat(n__0) → tt
U31(tt, IL, M, N) → cons(activate(N), n__take(activate(M), activate(IL)))
U21(tt) → nil
U11(tt, L) → s(length(activate(L)))
zeros → cons(0, n__zeros)
length(nil) → 0
isNatList(n__nil) → tt
isNatIList(n__zeros) → tt
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDPOrderProof
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
ISNAT(n__s(n__s(x0))) → ISNAT(s(activate(x0)))
ACTIVATE(n__and(n__isNatList(x0), y1)) → AND(isNatList(x0), y1)
ISNATLIST(n__cons(n__and(x0, x1), y1)) → AND(isNat(and(activate(x0), x1)), n__isNatList(activate(y1)))
ISNATLIST(n__cons(x0, y1)) → AND(isNat(x0), n__isNatList(activate(y1)))
ISNATILIST(n__cons(n__isNatList(x0), y1)) → AND(isNat(isNatList(x0)), n__isNatIList(activate(y1)))
ISNATLIST(n__cons(n__0, y1)) → AND(isNat(0), n__isNatList(activate(y1)))
ISNATILIST(n__cons(n__cons(x0, x1), y1)) → AND(isNat(cons(activate(x0), x1)), n__isNatIList(activate(y1)))
ACTIVATE(n__and(n__and(x0, x1), y1)) → AND(and(activate(x0), x1), y1)
ACTIVATE(n__s(X)) → ACTIVATE(X)
ACTIVATE(n__and(X1, X2)) → ACTIVATE(X1)
ACTIVATE(n__isNatList(X)) → ISNATLIST(X)
ACTIVATE(n__and(n__isNat(x0), y1)) → AND(isNat(x0), y1)
ISNATLIST(n__cons(n__isNatIList(x0), y1)) → AND(isNat(isNatIList(x0)), n__isNatList(activate(y1)))
ISNATLIST(n__cons(n__isNatList(x0), y1)) → AND(isNat(isNatList(x0)), n__isNatList(activate(y1)))
ISNATILIST(n__cons(n__and(x0, x1), y1)) → AND(isNat(and(activate(x0), x1)), n__isNatIList(activate(y1)))
ISNATLIST(n__cons(n__s(x0), y1)) → AND(isNat(s(activate(x0))), n__isNatList(activate(y1)))
ISNATLIST(n__cons(n__isNat(x0), y1)) → AND(isNat(isNat(x0)), n__isNatList(activate(y1)))
ACTIVATE(n__and(n__cons(x0, x1), y1)) → AND(cons(activate(x0), x1), y1)
ISNAT(n__s(n__isNatIList(x0))) → ISNAT(isNatIList(x0))
ISNAT(n__s(n__isNat(x0))) → ISNAT(isNat(x0))
ISNAT(n__s(n__cons(x0, x1))) → ISNAT(cons(activate(x0), x1))
ACTIVATE(n__and(n__s(x0), y1)) → AND(s(activate(x0)), y1)
ISNAT(n__s(V1)) → ACTIVATE(V1)
AND(tt, X) → ACTIVATE(X)
ISNATILIST(n__cons(n__s(x0), y1)) → AND(isNat(s(activate(x0))), n__isNatIList(activate(y1)))
ISNATILIST(n__cons(n__isNatIList(x0), y1)) → AND(isNat(isNatIList(x0)), n__isNatIList(activate(y1)))
ISNAT(n__s(n__isNatList(x0))) → ISNAT(isNatList(x0))
ACTIVATE(n__and(x0, y1)) → AND(x0, y1)
ISNATLIST(n__cons(n__cons(x0, x1), y1)) → AND(isNat(cons(activate(x0), x1)), n__isNatList(activate(y1)))
ISNATILIST(n__cons(x0, y1)) → AND(isNat(x0), n__isNatIList(activate(y1)))
ISNATILIST(n__cons(n__isNat(x0), y1)) → AND(isNat(isNat(x0)), n__isNatIList(activate(y1)))
ISNAT(n__s(n__take(x0, x1))) → ISNAT(take(activate(x0), activate(x1)))
ISNAT(n__s(n__and(x0, x1))) → ISNAT(and(activate(x0), x1))
ACTIVATE(n__isNat(X)) → ISNAT(X)
ISNAT(n__s(n__length(x0))) → ISNAT(length(activate(x0)))
ACTIVATE(n__isNatIList(X)) → ISNATILIST(X)
ISNATILIST(n__cons(n__0, y1)) → AND(isNat(0), n__isNatIList(activate(y1)))
ACTIVATE(n__and(n__isNatIList(x0), y1)) → AND(isNatIList(x0), y1)
ISNAT(n__s(x0)) → ISNAT(x0)
The TRS R consists of the following rules:
zeros → cons(0, n__zeros)
U11(tt, L) → s(length(activate(L)))
U21(tt) → nil
U31(tt, IL, M, N) → cons(activate(N), n__take(activate(M), activate(IL)))
and(tt, X) → activate(X)
isNat(n__0) → tt
isNat(n__length(V1)) → isNatList(activate(V1))
isNat(n__s(V1)) → isNat(activate(V1))
isNatIList(V) → isNatList(activate(V))
isNatIList(n__zeros) → tt
isNatIList(n__cons(V1, V2)) → and(isNat(activate(V1)), n__isNatIList(activate(V2)))
isNatList(n__nil) → tt
isNatList(n__cons(V1, V2)) → and(isNat(activate(V1)), n__isNatList(activate(V2)))
isNatList(n__take(V1, V2)) → and(isNat(activate(V1)), n__isNatIList(activate(V2)))
length(nil) → 0
length(cons(N, L)) → U11(and(isNatList(activate(L)), n__isNat(N)), activate(L))
take(0, IL) → U21(isNatIList(IL))
take(s(M), cons(N, IL)) → U31(and(isNatIList(activate(IL)), n__and(n__isNat(M), n__isNat(N))), activate(IL), M, N)
zeros → n__zeros
take(X1, X2) → n__take(X1, X2)
0 → n__0
length(X) → n__length(X)
s(X) → n__s(X)
cons(X1, X2) → n__cons(X1, X2)
isNatIList(X) → n__isNatIList(X)
nil → n__nil
isNatList(X) → n__isNatList(X)
isNat(X) → n__isNat(X)
and(X1, X2) → n__and(X1, X2)
activate(n__zeros) → zeros
activate(n__take(X1, X2)) → take(activate(X1), activate(X2))
activate(n__0) → 0
activate(n__length(X)) → length(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(n__isNatIList(X)) → isNatIList(X)
activate(n__nil) → nil
activate(n__isNatList(X)) → isNatList(X)
activate(n__isNat(X)) → isNat(X)
activate(n__and(X1, X2)) → and(activate(X1), X2)
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].
The following pairs can be oriented strictly and are deleted.
ISNATLIST(n__cons(n__isNatIList(x0), y1)) → AND(isNat(isNatIList(x0)), n__isNatList(activate(y1)))
ISNATILIST(n__cons(n__isNatIList(x0), y1)) → AND(isNat(isNatIList(x0)), n__isNatIList(activate(y1)))
ACTIVATE(n__and(n__isNatIList(x0), y1)) → AND(isNatIList(x0), y1)
The remaining pairs can at least be oriented weakly.
ISNAT(n__s(n__s(x0))) → ISNAT(s(activate(x0)))
ACTIVATE(n__and(n__isNatList(x0), y1)) → AND(isNatList(x0), y1)
ISNATLIST(n__cons(n__and(x0, x1), y1)) → AND(isNat(and(activate(x0), x1)), n__isNatList(activate(y1)))
ISNATLIST(n__cons(x0, y1)) → AND(isNat(x0), n__isNatList(activate(y1)))
ISNATILIST(n__cons(n__isNatList(x0), y1)) → AND(isNat(isNatList(x0)), n__isNatIList(activate(y1)))
ISNATLIST(n__cons(n__0, y1)) → AND(isNat(0), n__isNatList(activate(y1)))
ISNATILIST(n__cons(n__cons(x0, x1), y1)) → AND(isNat(cons(activate(x0), x1)), n__isNatIList(activate(y1)))
ACTIVATE(n__and(n__and(x0, x1), y1)) → AND(and(activate(x0), x1), y1)
ACTIVATE(n__s(X)) → ACTIVATE(X)
ACTIVATE(n__and(X1, X2)) → ACTIVATE(X1)
ACTIVATE(n__isNatList(X)) → ISNATLIST(X)
ACTIVATE(n__and(n__isNat(x0), y1)) → AND(isNat(x0), y1)
ISNATLIST(n__cons(n__isNatList(x0), y1)) → AND(isNat(isNatList(x0)), n__isNatList(activate(y1)))
ISNATILIST(n__cons(n__and(x0, x1), y1)) → AND(isNat(and(activate(x0), x1)), n__isNatIList(activate(y1)))
ISNATLIST(n__cons(n__s(x0), y1)) → AND(isNat(s(activate(x0))), n__isNatList(activate(y1)))
ISNATLIST(n__cons(n__isNat(x0), y1)) → AND(isNat(isNat(x0)), n__isNatList(activate(y1)))
ACTIVATE(n__and(n__cons(x0, x1), y1)) → AND(cons(activate(x0), x1), y1)
ISNAT(n__s(n__isNatIList(x0))) → ISNAT(isNatIList(x0))
ISNAT(n__s(n__isNat(x0))) → ISNAT(isNat(x0))
ISNAT(n__s(n__cons(x0, x1))) → ISNAT(cons(activate(x0), x1))
ACTIVATE(n__and(n__s(x0), y1)) → AND(s(activate(x0)), y1)
ISNAT(n__s(V1)) → ACTIVATE(V1)
AND(tt, X) → ACTIVATE(X)
ISNATILIST(n__cons(n__s(x0), y1)) → AND(isNat(s(activate(x0))), n__isNatIList(activate(y1)))
ISNAT(n__s(n__isNatList(x0))) → ISNAT(isNatList(x0))
ACTIVATE(n__and(x0, y1)) → AND(x0, y1)
ISNATLIST(n__cons(n__cons(x0, x1), y1)) → AND(isNat(cons(activate(x0), x1)), n__isNatList(activate(y1)))
ISNATILIST(n__cons(x0, y1)) → AND(isNat(x0), n__isNatIList(activate(y1)))
ISNATILIST(n__cons(n__isNat(x0), y1)) → AND(isNat(isNat(x0)), n__isNatIList(activate(y1)))
ISNAT(n__s(n__take(x0, x1))) → ISNAT(take(activate(x0), activate(x1)))
ISNAT(n__s(n__and(x0, x1))) → ISNAT(and(activate(x0), x1))
ACTIVATE(n__isNat(X)) → ISNAT(X)
ISNAT(n__s(n__length(x0))) → ISNAT(length(activate(x0)))
ACTIVATE(n__isNatIList(X)) → ISNATILIST(X)
ISNATILIST(n__cons(n__0, y1)) → AND(isNat(0), n__isNatIList(activate(y1)))
ISNAT(n__s(x0)) → ISNAT(x0)
Used ordering: Polynomial interpretation with max and min functions [25]:
POL(0) = 0
POL(ACTIVATE(x1)) = x1
POL(AND(x1, x2)) = x2
POL(ISNAT(x1)) = x1
POL(ISNATILIST(x1)) = 1 + x1
POL(ISNATLIST(x1)) = x1
POL(U11(x1, x2)) = x2
POL(U21(x1)) = 1
POL(U31(x1, x2, x3, x4)) = 1 + x2 + x3 + x4
POL(activate(x1)) = x1
POL(and(x1, x2)) = x1 + x2
POL(cons(x1, x2)) = x1 + x2
POL(isNat(x1)) = x1
POL(isNatIList(x1)) = 1 + x1
POL(isNatList(x1)) = x1
POL(length(x1)) = x1
POL(n__0) = 0
POL(n__and(x1, x2)) = x1 + x2
POL(n__cons(x1, x2)) = x1 + x2
POL(n__isNat(x1)) = x1
POL(n__isNatIList(x1)) = 1 + x1
POL(n__isNatList(x1)) = x1
POL(n__length(x1)) = x1
POL(n__nil) = 1
POL(n__s(x1)) = x1
POL(n__take(x1, x2)) = 1 + x1 + x2
POL(n__zeros) = 0
POL(nil) = 1
POL(s(x1)) = x1
POL(take(x1, x2)) = 1 + x1 + x2
POL(tt) = 0
POL(zeros) = 0
The following usable rules [17] were oriented:
isNatIList(X) → n__isNatIList(X)
cons(X1, X2) → n__cons(X1, X2)
isNatList(X) → n__isNatList(X)
nil → n__nil
and(X1, X2) → n__and(X1, X2)
isNat(X) → n__isNat(X)
activate(n__take(X1, X2)) → take(activate(X1), activate(X2))
activate(n__zeros) → zeros
take(0, IL) → U21(isNatIList(IL))
length(cons(N, L)) → U11(and(isNatList(activate(L)), n__isNat(N)), activate(L))
zeros → n__zeros
take(s(M), cons(N, IL)) → U31(and(isNatIList(activate(IL)), n__and(n__isNat(M), n__isNat(N))), activate(IL), M, N)
0 → n__0
take(X1, X2) → n__take(X1, X2)
s(X) → n__s(X)
length(X) → n__length(X)
activate(X) → X
activate(n__0) → 0
activate(n__length(X)) → length(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
isNatList(n__cons(V1, V2)) → and(isNat(activate(V1)), n__isNatList(activate(V2)))
isNatIList(V) → isNatList(activate(V))
activate(n__isNat(X)) → isNat(X)
activate(n__and(X1, X2)) → and(activate(X1), X2)
isNat(n__s(V1)) → isNat(activate(V1))
and(tt, X) → activate(X)
isNatIList(n__cons(V1, V2)) → and(isNat(activate(V1)), n__isNatIList(activate(V2)))
isNatList(n__take(V1, V2)) → and(isNat(activate(V1)), n__isNatIList(activate(V2)))
activate(n__isNatIList(X)) → isNatIList(X)
isNat(n__length(V1)) → isNatList(activate(V1))
activate(n__isNatList(X)) → isNatList(X)
activate(n__nil) → nil
isNat(n__0) → tt
U31(tt, IL, M, N) → cons(activate(N), n__take(activate(M), activate(IL)))
U21(tt) → nil
U11(tt, L) → s(length(activate(L)))
zeros → cons(0, n__zeros)
length(nil) → 0
isNatList(n__nil) → tt
isNatIList(n__zeros) → tt
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDPOrderProof
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
ISNAT(n__s(n__s(x0))) → ISNAT(s(activate(x0)))
ACTIVATE(n__and(n__isNatList(x0), y1)) → AND(isNatList(x0), y1)
ISNATLIST(n__cons(n__and(x0, x1), y1)) → AND(isNat(and(activate(x0), x1)), n__isNatList(activate(y1)))
ISNATILIST(n__cons(n__isNatList(x0), y1)) → AND(isNat(isNatList(x0)), n__isNatIList(activate(y1)))
ISNATLIST(n__cons(x0, y1)) → AND(isNat(x0), n__isNatList(activate(y1)))
ISNATILIST(n__cons(n__cons(x0, x1), y1)) → AND(isNat(cons(activate(x0), x1)), n__isNatIList(activate(y1)))
ISNATLIST(n__cons(n__0, y1)) → AND(isNat(0), n__isNatList(activate(y1)))
ACTIVATE(n__and(n__and(x0, x1), y1)) → AND(and(activate(x0), x1), y1)
ACTIVATE(n__and(X1, X2)) → ACTIVATE(X1)
ACTIVATE(n__s(X)) → ACTIVATE(X)
ACTIVATE(n__isNatList(X)) → ISNATLIST(X)
ISNATLIST(n__cons(n__isNatList(x0), y1)) → AND(isNat(isNatList(x0)), n__isNatList(activate(y1)))
ACTIVATE(n__and(n__isNat(x0), y1)) → AND(isNat(x0), y1)
ISNATILIST(n__cons(n__and(x0, x1), y1)) → AND(isNat(and(activate(x0), x1)), n__isNatIList(activate(y1)))
ISNATLIST(n__cons(n__s(x0), y1)) → AND(isNat(s(activate(x0))), n__isNatList(activate(y1)))
ISNATLIST(n__cons(n__isNat(x0), y1)) → AND(isNat(isNat(x0)), n__isNatList(activate(y1)))
ACTIVATE(n__and(n__cons(x0, x1), y1)) → AND(cons(activate(x0), x1), y1)
ISNAT(n__s(n__isNatIList(x0))) → ISNAT(isNatIList(x0))
ISNAT(n__s(n__isNat(x0))) → ISNAT(isNat(x0))
ISNAT(n__s(n__cons(x0, x1))) → ISNAT(cons(activate(x0), x1))
ACTIVATE(n__and(n__s(x0), y1)) → AND(s(activate(x0)), y1)
ISNAT(n__s(V1)) → ACTIVATE(V1)
AND(tt, X) → ACTIVATE(X)
ISNATILIST(n__cons(n__s(x0), y1)) → AND(isNat(s(activate(x0))), n__isNatIList(activate(y1)))
ISNAT(n__s(n__isNatList(x0))) → ISNAT(isNatList(x0))
ISNATLIST(n__cons(n__cons(x0, x1), y1)) → AND(isNat(cons(activate(x0), x1)), n__isNatList(activate(y1)))
ACTIVATE(n__and(x0, y1)) → AND(x0, y1)
ISNATILIST(n__cons(x0, y1)) → AND(isNat(x0), n__isNatIList(activate(y1)))
ISNAT(n__s(n__and(x0, x1))) → ISNAT(and(activate(x0), x1))
ISNAT(n__s(n__take(x0, x1))) → ISNAT(take(activate(x0), activate(x1)))
ISNATILIST(n__cons(n__isNat(x0), y1)) → AND(isNat(isNat(x0)), n__isNatIList(activate(y1)))
ACTIVATE(n__isNat(X)) → ISNAT(X)
ISNATILIST(n__cons(n__0, y1)) → AND(isNat(0), n__isNatIList(activate(y1)))
ACTIVATE(n__isNatIList(X)) → ISNATILIST(X)
ISNAT(n__s(n__length(x0))) → ISNAT(length(activate(x0)))
ISNAT(n__s(x0)) → ISNAT(x0)
The TRS R consists of the following rules:
zeros → cons(0, n__zeros)
U11(tt, L) → s(length(activate(L)))
U21(tt) → nil
U31(tt, IL, M, N) → cons(activate(N), n__take(activate(M), activate(IL)))
and(tt, X) → activate(X)
isNat(n__0) → tt
isNat(n__length(V1)) → isNatList(activate(V1))
isNat(n__s(V1)) → isNat(activate(V1))
isNatIList(V) → isNatList(activate(V))
isNatIList(n__zeros) → tt
isNatIList(n__cons(V1, V2)) → and(isNat(activate(V1)), n__isNatIList(activate(V2)))
isNatList(n__nil) → tt
isNatList(n__cons(V1, V2)) → and(isNat(activate(V1)), n__isNatList(activate(V2)))
isNatList(n__take(V1, V2)) → and(isNat(activate(V1)), n__isNatIList(activate(V2)))
length(nil) → 0
length(cons(N, L)) → U11(and(isNatList(activate(L)), n__isNat(N)), activate(L))
take(0, IL) → U21(isNatIList(IL))
take(s(M), cons(N, IL)) → U31(and(isNatIList(activate(IL)), n__and(n__isNat(M), n__isNat(N))), activate(IL), M, N)
zeros → n__zeros
take(X1, X2) → n__take(X1, X2)
0 → n__0
length(X) → n__length(X)
s(X) → n__s(X)
cons(X1, X2) → n__cons(X1, X2)
isNatIList(X) → n__isNatIList(X)
nil → n__nil
isNatList(X) → n__isNatList(X)
isNat(X) → n__isNat(X)
and(X1, X2) → n__and(X1, X2)
activate(n__zeros) → zeros
activate(n__take(X1, X2)) → take(activate(X1), activate(X2))
activate(n__0) → 0
activate(n__length(X)) → length(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(n__isNatIList(X)) → isNatIList(X)
activate(n__nil) → nil
activate(n__isNatList(X)) → isNatList(X)
activate(n__isNat(X)) → isNat(X)
activate(n__and(X1, X2)) → and(activate(X1), X2)
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].
The following pairs can be oriented strictly and are deleted.
ACTIVATE(n__and(n__isNatList(x0), y1)) → AND(isNatList(x0), y1)
ISNATILIST(n__cons(n__isNatList(x0), y1)) → AND(isNat(isNatList(x0)), n__isNatIList(activate(y1)))
ISNATLIST(n__cons(n__isNatList(x0), y1)) → AND(isNat(isNatList(x0)), n__isNatList(activate(y1)))
The remaining pairs can at least be oriented weakly.
ISNAT(n__s(n__s(x0))) → ISNAT(s(activate(x0)))
ISNATLIST(n__cons(n__and(x0, x1), y1)) → AND(isNat(and(activate(x0), x1)), n__isNatList(activate(y1)))
ISNATLIST(n__cons(x0, y1)) → AND(isNat(x0), n__isNatList(activate(y1)))
ISNATILIST(n__cons(n__cons(x0, x1), y1)) → AND(isNat(cons(activate(x0), x1)), n__isNatIList(activate(y1)))
ISNATLIST(n__cons(n__0, y1)) → AND(isNat(0), n__isNatList(activate(y1)))
ACTIVATE(n__and(n__and(x0, x1), y1)) → AND(and(activate(x0), x1), y1)
ACTIVATE(n__and(X1, X2)) → ACTIVATE(X1)
ACTIVATE(n__s(X)) → ACTIVATE(X)
ACTIVATE(n__isNatList(X)) → ISNATLIST(X)
ACTIVATE(n__and(n__isNat(x0), y1)) → AND(isNat(x0), y1)
ISNATILIST(n__cons(n__and(x0, x1), y1)) → AND(isNat(and(activate(x0), x1)), n__isNatIList(activate(y1)))
ISNATLIST(n__cons(n__s(x0), y1)) → AND(isNat(s(activate(x0))), n__isNatList(activate(y1)))
ISNATLIST(n__cons(n__isNat(x0), y1)) → AND(isNat(isNat(x0)), n__isNatList(activate(y1)))
ACTIVATE(n__and(n__cons(x0, x1), y1)) → AND(cons(activate(x0), x1), y1)
ISNAT(n__s(n__isNatIList(x0))) → ISNAT(isNatIList(x0))
ISNAT(n__s(n__isNat(x0))) → ISNAT(isNat(x0))
ISNAT(n__s(n__cons(x0, x1))) → ISNAT(cons(activate(x0), x1))
ACTIVATE(n__and(n__s(x0), y1)) → AND(s(activate(x0)), y1)
ISNAT(n__s(V1)) → ACTIVATE(V1)
AND(tt, X) → ACTIVATE(X)
ISNATILIST(n__cons(n__s(x0), y1)) → AND(isNat(s(activate(x0))), n__isNatIList(activate(y1)))
ISNAT(n__s(n__isNatList(x0))) → ISNAT(isNatList(x0))
ISNATLIST(n__cons(n__cons(x0, x1), y1)) → AND(isNat(cons(activate(x0), x1)), n__isNatList(activate(y1)))
ACTIVATE(n__and(x0, y1)) → AND(x0, y1)
ISNATILIST(n__cons(x0, y1)) → AND(isNat(x0), n__isNatIList(activate(y1)))
ISNAT(n__s(n__and(x0, x1))) → ISNAT(and(activate(x0), x1))
ISNAT(n__s(n__take(x0, x1))) → ISNAT(take(activate(x0), activate(x1)))
ISNATILIST(n__cons(n__isNat(x0), y1)) → AND(isNat(isNat(x0)), n__isNatIList(activate(y1)))
ACTIVATE(n__isNat(X)) → ISNAT(X)
ISNATILIST(n__cons(n__0, y1)) → AND(isNat(0), n__isNatIList(activate(y1)))
ACTIVATE(n__isNatIList(X)) → ISNATILIST(X)
ISNAT(n__s(n__length(x0))) → ISNAT(length(activate(x0)))
ISNAT(n__s(x0)) → ISNAT(x0)
Used ordering: Polynomial interpretation with max and min functions [25]:
POL(0) = 0
POL(ACTIVATE(x1)) = x1
POL(AND(x1, x2)) = x2
POL(ISNAT(x1)) = x1
POL(ISNATILIST(x1)) = 1 + x1
POL(ISNATLIST(x1)) = 1 + x1
POL(U11(x1, x2)) = 1 + x2
POL(U21(x1)) = 0
POL(U31(x1, x2, x3, x4)) = x2 + x3 + x4
POL(activate(x1)) = x1
POL(and(x1, x2)) = x1 + x2
POL(cons(x1, x2)) = x1 + x2
POL(isNat(x1)) = x1
POL(isNatIList(x1)) = 1 + x1
POL(isNatList(x1)) = 1 + x1
POL(length(x1)) = 1 + x1
POL(n__0) = 0
POL(n__and(x1, x2)) = x1 + x2
POL(n__cons(x1, x2)) = x1 + x2
POL(n__isNat(x1)) = x1
POL(n__isNatIList(x1)) = 1 + x1
POL(n__isNatList(x1)) = 1 + x1
POL(n__length(x1)) = 1 + x1
POL(n__nil) = 0
POL(n__s(x1)) = x1
POL(n__take(x1, x2)) = x1 + x2
POL(n__zeros) = 0
POL(nil) = 0
POL(s(x1)) = x1
POL(take(x1, x2)) = x1 + x2
POL(tt) = 0
POL(zeros) = 0
The following usable rules [17] were oriented:
isNatIList(X) → n__isNatIList(X)
cons(X1, X2) → n__cons(X1, X2)
isNatList(X) → n__isNatList(X)
nil → n__nil
and(X1, X2) → n__and(X1, X2)
isNat(X) → n__isNat(X)
activate(n__take(X1, X2)) → take(activate(X1), activate(X2))
activate(n__zeros) → zeros
take(0, IL) → U21(isNatIList(IL))
length(cons(N, L)) → U11(and(isNatList(activate(L)), n__isNat(N)), activate(L))
zeros → n__zeros
take(s(M), cons(N, IL)) → U31(and(isNatIList(activate(IL)), n__and(n__isNat(M), n__isNat(N))), activate(IL), M, N)
0 → n__0
take(X1, X2) → n__take(X1, X2)
s(X) → n__s(X)
length(X) → n__length(X)
activate(X) → X
activate(n__0) → 0
activate(n__length(X)) → length(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
isNatList(n__cons(V1, V2)) → and(isNat(activate(V1)), n__isNatList(activate(V2)))
isNatIList(V) → isNatList(activate(V))
activate(n__isNat(X)) → isNat(X)
activate(n__and(X1, X2)) → and(activate(X1), X2)
isNat(n__s(V1)) → isNat(activate(V1))
and(tt, X) → activate(X)
isNatIList(n__cons(V1, V2)) → and(isNat(activate(V1)), n__isNatIList(activate(V2)))
isNatList(n__take(V1, V2)) → and(isNat(activate(V1)), n__isNatIList(activate(V2)))
activate(n__isNatIList(X)) → isNatIList(X)
isNat(n__length(V1)) → isNatList(activate(V1))
activate(n__isNatList(X)) → isNatList(X)
activate(n__nil) → nil
isNat(n__0) → tt
U31(tt, IL, M, N) → cons(activate(N), n__take(activate(M), activate(IL)))
U21(tt) → nil
U11(tt, L) → s(length(activate(L)))
zeros → cons(0, n__zeros)
length(nil) → 0
isNatList(n__nil) → tt
isNatIList(n__zeros) → tt
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDPOrderProof
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
ISNAT(n__s(n__s(x0))) → ISNAT(s(activate(x0)))
ISNATLIST(n__cons(n__and(x0, x1), y1)) → AND(isNat(and(activate(x0), x1)), n__isNatList(activate(y1)))
ISNATLIST(n__cons(x0, y1)) → AND(isNat(x0), n__isNatList(activate(y1)))
ISNATLIST(n__cons(n__0, y1)) → AND(isNat(0), n__isNatList(activate(y1)))
ISNATILIST(n__cons(n__cons(x0, x1), y1)) → AND(isNat(cons(activate(x0), x1)), n__isNatIList(activate(y1)))
ACTIVATE(n__and(n__and(x0, x1), y1)) → AND(and(activate(x0), x1), y1)
ACTIVATE(n__s(X)) → ACTIVATE(X)
ACTIVATE(n__and(X1, X2)) → ACTIVATE(X1)
ACTIVATE(n__isNatList(X)) → ISNATLIST(X)
ACTIVATE(n__and(n__isNat(x0), y1)) → AND(isNat(x0), y1)
ISNATLIST(n__cons(n__s(x0), y1)) → AND(isNat(s(activate(x0))), n__isNatList(activate(y1)))
ISNATILIST(n__cons(n__and(x0, x1), y1)) → AND(isNat(and(activate(x0), x1)), n__isNatIList(activate(y1)))
ISNATLIST(n__cons(n__isNat(x0), y1)) → AND(isNat(isNat(x0)), n__isNatList(activate(y1)))
ACTIVATE(n__and(n__cons(x0, x1), y1)) → AND(cons(activate(x0), x1), y1)
ISNAT(n__s(n__isNatIList(x0))) → ISNAT(isNatIList(x0))
ISNAT(n__s(n__isNat(x0))) → ISNAT(isNat(x0))
ISNAT(n__s(n__cons(x0, x1))) → ISNAT(cons(activate(x0), x1))
ACTIVATE(n__and(n__s(x0), y1)) → AND(s(activate(x0)), y1)
ISNAT(n__s(V1)) → ACTIVATE(V1)
AND(tt, X) → ACTIVATE(X)
ISNATILIST(n__cons(n__s(x0), y1)) → AND(isNat(s(activate(x0))), n__isNatIList(activate(y1)))
ISNAT(n__s(n__isNatList(x0))) → ISNAT(isNatList(x0))
ISNATLIST(n__cons(n__cons(x0, x1), y1)) → AND(isNat(cons(activate(x0), x1)), n__isNatList(activate(y1)))
ACTIVATE(n__and(x0, y1)) → AND(x0, y1)
ISNATILIST(n__cons(x0, y1)) → AND(isNat(x0), n__isNatIList(activate(y1)))
ISNATILIST(n__cons(n__isNat(x0), y1)) → AND(isNat(isNat(x0)), n__isNatIList(activate(y1)))
ISNAT(n__s(n__take(x0, x1))) → ISNAT(take(activate(x0), activate(x1)))
ISNAT(n__s(n__and(x0, x1))) → ISNAT(and(activate(x0), x1))
ACTIVATE(n__isNat(X)) → ISNAT(X)
ISNAT(n__s(n__length(x0))) → ISNAT(length(activate(x0)))
ACTIVATE(n__isNatIList(X)) → ISNATILIST(X)
ISNATILIST(n__cons(n__0, y1)) → AND(isNat(0), n__isNatIList(activate(y1)))
ISNAT(n__s(x0)) → ISNAT(x0)
The TRS R consists of the following rules:
zeros → cons(0, n__zeros)
U11(tt, L) → s(length(activate(L)))
U21(tt) → nil
U31(tt, IL, M, N) → cons(activate(N), n__take(activate(M), activate(IL)))
and(tt, X) → activate(X)
isNat(n__0) → tt
isNat(n__length(V1)) → isNatList(activate(V1))
isNat(n__s(V1)) → isNat(activate(V1))
isNatIList(V) → isNatList(activate(V))
isNatIList(n__zeros) → tt
isNatIList(n__cons(V1, V2)) → and(isNat(activate(V1)), n__isNatIList(activate(V2)))
isNatList(n__nil) → tt
isNatList(n__cons(V1, V2)) → and(isNat(activate(V1)), n__isNatList(activate(V2)))
isNatList(n__take(V1, V2)) → and(isNat(activate(V1)), n__isNatIList(activate(V2)))
length(nil) → 0
length(cons(N, L)) → U11(and(isNatList(activate(L)), n__isNat(N)), activate(L))
take(0, IL) → U21(isNatIList(IL))
take(s(M), cons(N, IL)) → U31(and(isNatIList(activate(IL)), n__and(n__isNat(M), n__isNat(N))), activate(IL), M, N)
zeros → n__zeros
take(X1, X2) → n__take(X1, X2)
0 → n__0
length(X) → n__length(X)
s(X) → n__s(X)
cons(X1, X2) → n__cons(X1, X2)
isNatIList(X) → n__isNatIList(X)
nil → n__nil
isNatList(X) → n__isNatList(X)
isNat(X) → n__isNat(X)
and(X1, X2) → n__and(X1, X2)
activate(n__zeros) → zeros
activate(n__take(X1, X2)) → take(activate(X1), activate(X2))
activate(n__0) → 0
activate(n__length(X)) → length(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(n__isNatIList(X)) → isNatIList(X)
activate(n__nil) → nil
activate(n__isNatList(X)) → isNatList(X)
activate(n__isNat(X)) → isNat(X)
activate(n__and(X1, X2)) → and(activate(X1), X2)
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].
The following pairs can be oriented strictly and are deleted.
ISNATLIST(n__cons(n__isNat(x0), y1)) → AND(isNat(isNat(x0)), n__isNatList(activate(y1)))
ISNATILIST(n__cons(n__isNat(x0), y1)) → AND(isNat(isNat(x0)), n__isNatIList(activate(y1)))
The remaining pairs can at least be oriented weakly.
ISNAT(n__s(n__s(x0))) → ISNAT(s(activate(x0)))
ISNATLIST(n__cons(n__and(x0, x1), y1)) → AND(isNat(and(activate(x0), x1)), n__isNatList(activate(y1)))
ISNATLIST(n__cons(x0, y1)) → AND(isNat(x0), n__isNatList(activate(y1)))
ISNATLIST(n__cons(n__0, y1)) → AND(isNat(0), n__isNatList(activate(y1)))
ISNATILIST(n__cons(n__cons(x0, x1), y1)) → AND(isNat(cons(activate(x0), x1)), n__isNatIList(activate(y1)))
ACTIVATE(n__and(n__and(x0, x1), y1)) → AND(and(activate(x0), x1), y1)
ACTIVATE(n__s(X)) → ACTIVATE(X)
ACTIVATE(n__and(X1, X2)) → ACTIVATE(X1)
ACTIVATE(n__isNatList(X)) → ISNATLIST(X)
ACTIVATE(n__and(n__isNat(x0), y1)) → AND(isNat(x0), y1)
ISNATLIST(n__cons(n__s(x0), y1)) → AND(isNat(s(activate(x0))), n__isNatList(activate(y1)))
ISNATILIST(n__cons(n__and(x0, x1), y1)) → AND(isNat(and(activate(x0), x1)), n__isNatIList(activate(y1)))
ACTIVATE(n__and(n__cons(x0, x1), y1)) → AND(cons(activate(x0), x1), y1)
ISNAT(n__s(n__isNatIList(x0))) → ISNAT(isNatIList(x0))
ISNAT(n__s(n__isNat(x0))) → ISNAT(isNat(x0))
ISNAT(n__s(n__cons(x0, x1))) → ISNAT(cons(activate(x0), x1))
ACTIVATE(n__and(n__s(x0), y1)) → AND(s(activate(x0)), y1)
ISNAT(n__s(V1)) → ACTIVATE(V1)
AND(tt, X) → ACTIVATE(X)
ISNATILIST(n__cons(n__s(x0), y1)) → AND(isNat(s(activate(x0))), n__isNatIList(activate(y1)))
ISNAT(n__s(n__isNatList(x0))) → ISNAT(isNatList(x0))
ISNATLIST(n__cons(n__cons(x0, x1), y1)) → AND(isNat(cons(activate(x0), x1)), n__isNatList(activate(y1)))
ACTIVATE(n__and(x0, y1)) → AND(x0, y1)
ISNATILIST(n__cons(x0, y1)) → AND(isNat(x0), n__isNatIList(activate(y1)))
ISNAT(n__s(n__take(x0, x1))) → ISNAT(take(activate(x0), activate(x1)))
ISNAT(n__s(n__and(x0, x1))) → ISNAT(and(activate(x0), x1))
ACTIVATE(n__isNat(X)) → ISNAT(X)
ISNAT(n__s(n__length(x0))) → ISNAT(length(activate(x0)))
ACTIVATE(n__isNatIList(X)) → ISNATILIST(X)
ISNATILIST(n__cons(n__0, y1)) → AND(isNat(0), n__isNatIList(activate(y1)))
ISNAT(n__s(x0)) → ISNAT(x0)
Used ordering: Matrix interpretation [3]:
Non-tuple symbols:
M( U31(x1, ..., x4) ) = | | + | | · | x1 | + | | · | x2 | + | | · | x3 | + | | · | x4 |
M( and(x1, x2) ) = | | + | | · | x1 | + | | · | x2 |
M( take(x1, x2) ) = | | + | | · | x1 | + | | · | x2 |
M( isNatList(x1) ) = | | + | | · | x1 |
M( isNatIList(x1) ) = | | + | | · | x1 |
M( n__isNatIList(x1) ) = | | + | | · | x1 |
M( n__length(x1) ) = | | + | | · | x1 |
M( n__isNatList(x1) ) = | | + | | · | x1 |
M( n__cons(x1, x2) ) = | | + | | · | x1 | + | | · | x2 |
M( U11(x1, x2) ) = | | + | | · | x1 | + | | · | x2 |
M( n__and(x1, x2) ) = | | + | | · | x1 | + | | · | x2 |
M( cons(x1, x2) ) = | | + | | · | x1 | + | | · | x2 |
M( n__take(x1, x2) ) = | | + | | · | x1 | + | | · | x2 |
Tuple symbols:
M( ISNATLIST(x1) ) = | 0 | + | | · | x1 |
M( AND(x1, x2) ) = | 0 | + | | · | x1 | + | | · | x2 |
M( ISNATILIST(x1) ) = | 0 | + | | · | x1 |
M( ACTIVATE(x1) ) = | 0 | + | | · | x1 |
Matrix type:
We used a basic matrix type which is not further parametrizeable.
As matrix orders are CE-compatible, we used usable rules w.r.t. argument filtering in the order.
The following usable rules [17] were oriented:
isNatIList(X) → n__isNatIList(X)
cons(X1, X2) → n__cons(X1, X2)
isNatList(X) → n__isNatList(X)
nil → n__nil
and(X1, X2) → n__and(X1, X2)
isNat(X) → n__isNat(X)
activate(n__take(X1, X2)) → take(activate(X1), activate(X2))
activate(n__zeros) → zeros
take(0, IL) → U21(isNatIList(IL))
length(cons(N, L)) → U11(and(isNatList(activate(L)), n__isNat(N)), activate(L))
zeros → n__zeros
take(s(M), cons(N, IL)) → U31(and(isNatIList(activate(IL)), n__and(n__isNat(M), n__isNat(N))), activate(IL), M, N)
0 → n__0
take(X1, X2) → n__take(X1, X2)
s(X) → n__s(X)
length(X) → n__length(X)
activate(X) → X
activate(n__0) → 0
activate(n__length(X)) → length(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
isNatList(n__cons(V1, V2)) → and(isNat(activate(V1)), n__isNatList(activate(V2)))
isNatIList(V) → isNatList(activate(V))
activate(n__isNat(X)) → isNat(X)
activate(n__and(X1, X2)) → and(activate(X1), X2)
isNat(n__s(V1)) → isNat(activate(V1))
and(tt, X) → activate(X)
isNatIList(n__cons(V1, V2)) → and(isNat(activate(V1)), n__isNatIList(activate(V2)))
isNatList(n__take(V1, V2)) → and(isNat(activate(V1)), n__isNatIList(activate(V2)))
activate(n__isNatIList(X)) → isNatIList(X)
isNat(n__length(V1)) → isNatList(activate(V1))
activate(n__isNatList(X)) → isNatList(X)
activate(n__nil) → nil
isNat(n__0) → tt
U31(tt, IL, M, N) → cons(activate(N), n__take(activate(M), activate(IL)))
U21(tt) → nil
U11(tt, L) → s(length(activate(L)))
zeros → cons(0, n__zeros)
length(nil) → 0
isNatList(n__nil) → tt
isNatIList(n__zeros) → tt
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDPOrderProof
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
ISNAT(n__s(n__s(x0))) → ISNAT(s(activate(x0)))
ISNATLIST(n__cons(n__and(x0, x1), y1)) → AND(isNat(and(activate(x0), x1)), n__isNatList(activate(y1)))
ISNATLIST(n__cons(x0, y1)) → AND(isNat(x0), n__isNatList(activate(y1)))
ISNATILIST(n__cons(n__cons(x0, x1), y1)) → AND(isNat(cons(activate(x0), x1)), n__isNatIList(activate(y1)))
ISNATLIST(n__cons(n__0, y1)) → AND(isNat(0), n__isNatList(activate(y1)))
ACTIVATE(n__and(n__and(x0, x1), y1)) → AND(and(activate(x0), x1), y1)
ACTIVATE(n__and(X1, X2)) → ACTIVATE(X1)
ACTIVATE(n__s(X)) → ACTIVATE(X)
ACTIVATE(n__isNatList(X)) → ISNATLIST(X)
ACTIVATE(n__and(n__isNat(x0), y1)) → AND(isNat(x0), y1)
ISNATILIST(n__cons(n__and(x0, x1), y1)) → AND(isNat(and(activate(x0), x1)), n__isNatIList(activate(y1)))
ISNATLIST(n__cons(n__s(x0), y1)) → AND(isNat(s(activate(x0))), n__isNatList(activate(y1)))
ACTIVATE(n__and(n__cons(x0, x1), y1)) → AND(cons(activate(x0), x1), y1)
ISNAT(n__s(n__isNatIList(x0))) → ISNAT(isNatIList(x0))
ISNAT(n__s(n__isNat(x0))) → ISNAT(isNat(x0))
ISNAT(n__s(n__cons(x0, x1))) → ISNAT(cons(activate(x0), x1))
ACTIVATE(n__and(n__s(x0), y1)) → AND(s(activate(x0)), y1)
ISNAT(n__s(V1)) → ACTIVATE(V1)
AND(tt, X) → ACTIVATE(X)
ISNATILIST(n__cons(n__s(x0), y1)) → AND(isNat(s(activate(x0))), n__isNatIList(activate(y1)))
ISNAT(n__s(n__isNatList(x0))) → ISNAT(isNatList(x0))
ISNATLIST(n__cons(n__cons(x0, x1), y1)) → AND(isNat(cons(activate(x0), x1)), n__isNatList(activate(y1)))
ACTIVATE(n__and(x0, y1)) → AND(x0, y1)
ISNATILIST(n__cons(x0, y1)) → AND(isNat(x0), n__isNatIList(activate(y1)))
ISNAT(n__s(n__and(x0, x1))) → ISNAT(and(activate(x0), x1))
ISNAT(n__s(n__take(x0, x1))) → ISNAT(take(activate(x0), activate(x1)))
ACTIVATE(n__isNat(X)) → ISNAT(X)
ISNATILIST(n__cons(n__0, y1)) → AND(isNat(0), n__isNatIList(activate(y1)))
ACTIVATE(n__isNatIList(X)) → ISNATILIST(X)
ISNAT(n__s(n__length(x0))) → ISNAT(length(activate(x0)))
ISNAT(n__s(x0)) → ISNAT(x0)
The TRS R consists of the following rules:
zeros → cons(0, n__zeros)
U11(tt, L) → s(length(activate(L)))
U21(tt) → nil
U31(tt, IL, M, N) → cons(activate(N), n__take(activate(M), activate(IL)))
and(tt, X) → activate(X)
isNat(n__0) → tt
isNat(n__length(V1)) → isNatList(activate(V1))
isNat(n__s(V1)) → isNat(activate(V1))
isNatIList(V) → isNatList(activate(V))
isNatIList(n__zeros) → tt
isNatIList(n__cons(V1, V2)) → and(isNat(activate(V1)), n__isNatIList(activate(V2)))
isNatList(n__nil) → tt
isNatList(n__cons(V1, V2)) → and(isNat(activate(V1)), n__isNatList(activate(V2)))
isNatList(n__take(V1, V2)) → and(isNat(activate(V1)), n__isNatIList(activate(V2)))
length(nil) → 0
length(cons(N, L)) → U11(and(isNatList(activate(L)), n__isNat(N)), activate(L))
take(0, IL) → U21(isNatIList(IL))
take(s(M), cons(N, IL)) → U31(and(isNatIList(activate(IL)), n__and(n__isNat(M), n__isNat(N))), activate(IL), M, N)
zeros → n__zeros
take(X1, X2) → n__take(X1, X2)
0 → n__0
length(X) → n__length(X)
s(X) → n__s(X)
cons(X1, X2) → n__cons(X1, X2)
isNatIList(X) → n__isNatIList(X)
nil → n__nil
isNatList(X) → n__isNatList(X)
isNat(X) → n__isNat(X)
and(X1, X2) → n__and(X1, X2)
activate(n__zeros) → zeros
activate(n__take(X1, X2)) → take(activate(X1), activate(X2))
activate(n__0) → 0
activate(n__length(X)) → length(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(n__isNatIList(X)) → isNatIList(X)
activate(n__nil) → nil
activate(n__isNatList(X)) → isNatList(X)
activate(n__isNat(X)) → isNat(X)
activate(n__and(X1, X2)) → and(activate(X1), X2)
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].
The following pairs can be oriented strictly and are deleted.
ISNAT(n__s(n__take(x0, x1))) → ISNAT(take(activate(x0), activate(x1)))
The remaining pairs can at least be oriented weakly.
ISNAT(n__s(n__s(x0))) → ISNAT(s(activate(x0)))
ISNATLIST(n__cons(n__and(x0, x1), y1)) → AND(isNat(and(activate(x0), x1)), n__isNatList(activate(y1)))
ISNATLIST(n__cons(x0, y1)) → AND(isNat(x0), n__isNatList(activate(y1)))
ISNATILIST(n__cons(n__cons(x0, x1), y1)) → AND(isNat(cons(activate(x0), x1)), n__isNatIList(activate(y1)))
ISNATLIST(n__cons(n__0, y1)) → AND(isNat(0), n__isNatList(activate(y1)))
ACTIVATE(n__and(n__and(x0, x1), y1)) → AND(and(activate(x0), x1), y1)
ACTIVATE(n__and(X1, X2)) → ACTIVATE(X1)
ACTIVATE(n__s(X)) → ACTIVATE(X)
ACTIVATE(n__isNatList(X)) → ISNATLIST(X)
ACTIVATE(n__and(n__isNat(x0), y1)) → AND(isNat(x0), y1)
ISNATILIST(n__cons(n__and(x0, x1), y1)) → AND(isNat(and(activate(x0), x1)), n__isNatIList(activate(y1)))
ISNATLIST(n__cons(n__s(x0), y1)) → AND(isNat(s(activate(x0))), n__isNatList(activate(y1)))
ACTIVATE(n__and(n__cons(x0, x1), y1)) → AND(cons(activate(x0), x1), y1)
ISNAT(n__s(n__isNatIList(x0))) → ISNAT(isNatIList(x0))
ISNAT(n__s(n__isNat(x0))) → ISNAT(isNat(x0))
ISNAT(n__s(n__cons(x0, x1))) → ISNAT(cons(activate(x0), x1))
ACTIVATE(n__and(n__s(x0), y1)) → AND(s(activate(x0)), y1)
ISNAT(n__s(V1)) → ACTIVATE(V1)
AND(tt, X) → ACTIVATE(X)
ISNATILIST(n__cons(n__s(x0), y1)) → AND(isNat(s(activate(x0))), n__isNatIList(activate(y1)))
ISNAT(n__s(n__isNatList(x0))) → ISNAT(isNatList(x0))
ISNATLIST(n__cons(n__cons(x0, x1), y1)) → AND(isNat(cons(activate(x0), x1)), n__isNatList(activate(y1)))
ACTIVATE(n__and(x0, y1)) → AND(x0, y1)
ISNATILIST(n__cons(x0, y1)) → AND(isNat(x0), n__isNatIList(activate(y1)))
ISNAT(n__s(n__and(x0, x1))) → ISNAT(and(activate(x0), x1))
ACTIVATE(n__isNat(X)) → ISNAT(X)
ISNATILIST(n__cons(n__0, y1)) → AND(isNat(0), n__isNatIList(activate(y1)))
ACTIVATE(n__isNatIList(X)) → ISNATILIST(X)
ISNAT(n__s(n__length(x0))) → ISNAT(length(activate(x0)))
ISNAT(n__s(x0)) → ISNAT(x0)
Used ordering: Matrix interpretation [3]:
Non-tuple symbols:
M( U31(x1, ..., x4) ) = | | + | | · | x1 | + | | · | x2 | + | | · | x3 | + | | · | x4 |
M( and(x1, x2) ) = | | + | | · | x1 | + | | · | x2 |
M( take(x1, x2) ) = | | + | | · | x1 | + | | · | x2 |
M( isNatList(x1) ) = | | + | | · | x1 |
M( isNatIList(x1) ) = | | + | | · | x1 |
M( n__isNatIList(x1) ) = | | + | | · | x1 |
M( n__length(x1) ) = | | + | | · | x1 |
M( n__isNatList(x1) ) = | | + | | · | x1 |
M( n__cons(x1, x2) ) = | | + | | · | x1 | + | | · | x2 |
M( U11(x1, x2) ) = | | + | | · | x1 | + | | · | x2 |
M( n__and(x1, x2) ) = | | + | | · | x1 | + | | · | x2 |
M( cons(x1, x2) ) = | | + | | · | x1 | + | | · | x2 |
M( n__take(x1, x2) ) = | | + | | · | x1 | + | | · | x2 |
Tuple symbols:
M( ISNATLIST(x1) ) = | 0 | + | | · | x1 |
M( AND(x1, x2) ) = | 0 | + | | · | x1 | + | | · | x2 |
M( ISNATILIST(x1) ) = | 0 | + | | · | x1 |
M( ACTIVATE(x1) ) = | 0 | + | | · | x1 |
Matrix type:
We used a basic matrix type which is not further parametrizeable.
As matrix orders are CE-compatible, we used usable rules w.r.t. argument filtering in the order.
The following usable rules [17] were oriented:
isNatIList(X) → n__isNatIList(X)
cons(X1, X2) → n__cons(X1, X2)
isNatList(X) → n__isNatList(X)
nil → n__nil
and(X1, X2) → n__and(X1, X2)
isNat(X) → n__isNat(X)
activate(n__take(X1, X2)) → take(activate(X1), activate(X2))
activate(n__zeros) → zeros
take(0, IL) → U21(isNatIList(IL))
length(cons(N, L)) → U11(and(isNatList(activate(L)), n__isNat(N)), activate(L))
zeros → n__zeros
take(s(M), cons(N, IL)) → U31(and(isNatIList(activate(IL)), n__and(n__isNat(M), n__isNat(N))), activate(IL), M, N)
0 → n__0
take(X1, X2) → n__take(X1, X2)
s(X) → n__s(X)
length(X) → n__length(X)
activate(X) → X
activate(n__0) → 0
activate(n__length(X)) → length(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
isNatList(n__cons(V1, V2)) → and(isNat(activate(V1)), n__isNatList(activate(V2)))
isNatIList(V) → isNatList(activate(V))
activate(n__isNat(X)) → isNat(X)
activate(n__and(X1, X2)) → and(activate(X1), X2)
isNat(n__s(V1)) → isNat(activate(V1))
and(tt, X) → activate(X)
isNatIList(n__cons(V1, V2)) → and(isNat(activate(V1)), n__isNatIList(activate(V2)))
isNatList(n__take(V1, V2)) → and(isNat(activate(V1)), n__isNatIList(activate(V2)))
activate(n__isNatIList(X)) → isNatIList(X)
isNat(n__length(V1)) → isNatList(activate(V1))
activate(n__isNatList(X)) → isNatList(X)
activate(n__nil) → nil
isNat(n__0) → tt
U31(tt, IL, M, N) → cons(activate(N), n__take(activate(M), activate(IL)))
U21(tt) → nil
U11(tt, L) → s(length(activate(L)))
zeros → cons(0, n__zeros)
length(nil) → 0
isNatList(n__nil) → tt
isNatIList(n__zeros) → tt
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDPOrderProof
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
ISNAT(n__s(n__s(x0))) → ISNAT(s(activate(x0)))
ISNATLIST(n__cons(n__and(x0, x1), y1)) → AND(isNat(and(activate(x0), x1)), n__isNatList(activate(y1)))
ISNATLIST(n__cons(x0, y1)) → AND(isNat(x0), n__isNatList(activate(y1)))
ISNATLIST(n__cons(n__0, y1)) → AND(isNat(0), n__isNatList(activate(y1)))
ISNATILIST(n__cons(n__cons(x0, x1), y1)) → AND(isNat(cons(activate(x0), x1)), n__isNatIList(activate(y1)))
ACTIVATE(n__and(n__and(x0, x1), y1)) → AND(and(activate(x0), x1), y1)
ACTIVATE(n__s(X)) → ACTIVATE(X)
ACTIVATE(n__and(X1, X2)) → ACTIVATE(X1)
ACTIVATE(n__isNatList(X)) → ISNATLIST(X)
ACTIVATE(n__and(n__isNat(x0), y1)) → AND(isNat(x0), y1)
ISNATLIST(n__cons(n__s(x0), y1)) → AND(isNat(s(activate(x0))), n__isNatList(activate(y1)))
ISNATILIST(n__cons(n__and(x0, x1), y1)) → AND(isNat(and(activate(x0), x1)), n__isNatIList(activate(y1)))
ACTIVATE(n__and(n__cons(x0, x1), y1)) → AND(cons(activate(x0), x1), y1)
ISNAT(n__s(n__isNatIList(x0))) → ISNAT(isNatIList(x0))
ISNAT(n__s(n__isNat(x0))) → ISNAT(isNat(x0))
ISNAT(n__s(n__cons(x0, x1))) → ISNAT(cons(activate(x0), x1))
ACTIVATE(n__and(n__s(x0), y1)) → AND(s(activate(x0)), y1)
ISNAT(n__s(V1)) → ACTIVATE(V1)
AND(tt, X) → ACTIVATE(X)
ISNATILIST(n__cons(n__s(x0), y1)) → AND(isNat(s(activate(x0))), n__isNatIList(activate(y1)))
ISNAT(n__s(n__isNatList(x0))) → ISNAT(isNatList(x0))
ISNATLIST(n__cons(n__cons(x0, x1), y1)) → AND(isNat(cons(activate(x0), x1)), n__isNatList(activate(y1)))
ACTIVATE(n__and(x0, y1)) → AND(x0, y1)
ISNATILIST(n__cons(x0, y1)) → AND(isNat(x0), n__isNatIList(activate(y1)))
ISNAT(n__s(n__and(x0, x1))) → ISNAT(and(activate(x0), x1))
ACTIVATE(n__isNat(X)) → ISNAT(X)
ISNAT(n__s(n__length(x0))) → ISNAT(length(activate(x0)))
ACTIVATE(n__isNatIList(X)) → ISNATILIST(X)
ISNATILIST(n__cons(n__0, y1)) → AND(isNat(0), n__isNatIList(activate(y1)))
ISNAT(n__s(x0)) → ISNAT(x0)
The TRS R consists of the following rules:
zeros → cons(0, n__zeros)
U11(tt, L) → s(length(activate(L)))
U21(tt) → nil
U31(tt, IL, M, N) → cons(activate(N), n__take(activate(M), activate(IL)))
and(tt, X) → activate(X)
isNat(n__0) → tt
isNat(n__length(V1)) → isNatList(activate(V1))
isNat(n__s(V1)) → isNat(activate(V1))
isNatIList(V) → isNatList(activate(V))
isNatIList(n__zeros) → tt
isNatIList(n__cons(V1, V2)) → and(isNat(activate(V1)), n__isNatIList(activate(V2)))
isNatList(n__nil) → tt
isNatList(n__cons(V1, V2)) → and(isNat(activate(V1)), n__isNatList(activate(V2)))
isNatList(n__take(V1, V2)) → and(isNat(activate(V1)), n__isNatIList(activate(V2)))
length(nil) → 0
length(cons(N, L)) → U11(and(isNatList(activate(L)), n__isNat(N)), activate(L))
take(0, IL) → U21(isNatIList(IL))
take(s(M), cons(N, IL)) → U31(and(isNatIList(activate(IL)), n__and(n__isNat(M), n__isNat(N))), activate(IL), M, N)
zeros → n__zeros
take(X1, X2) → n__take(X1, X2)
0 → n__0
length(X) → n__length(X)
s(X) → n__s(X)
cons(X1, X2) → n__cons(X1, X2)
isNatIList(X) → n__isNatIList(X)
nil → n__nil
isNatList(X) → n__isNatList(X)
isNat(X) → n__isNat(X)
and(X1, X2) → n__and(X1, X2)
activate(n__zeros) → zeros
activate(n__take(X1, X2)) → take(activate(X1), activate(X2))
activate(n__0) → 0
activate(n__length(X)) → length(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(n__isNatIList(X)) → isNatIList(X)
activate(n__nil) → nil
activate(n__isNatList(X)) → isNatList(X)
activate(n__isNat(X)) → isNat(X)
activate(n__and(X1, X2)) → and(activate(X1), X2)
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].
The following pairs can be oriented strictly and are deleted.
ACTIVATE(n__and(n__cons(x0, x1), y1)) → AND(cons(activate(x0), x1), y1)
ISNAT(n__s(n__cons(x0, x1))) → ISNAT(cons(activate(x0), x1))
The remaining pairs can at least be oriented weakly.
ISNAT(n__s(n__s(x0))) → ISNAT(s(activate(x0)))
ISNATLIST(n__cons(n__and(x0, x1), y1)) → AND(isNat(and(activate(x0), x1)), n__isNatList(activate(y1)))
ISNATLIST(n__cons(x0, y1)) → AND(isNat(x0), n__isNatList(activate(y1)))
ISNATLIST(n__cons(n__0, y1)) → AND(isNat(0), n__isNatList(activate(y1)))
ISNATILIST(n__cons(n__cons(x0, x1), y1)) → AND(isNat(cons(activate(x0), x1)), n__isNatIList(activate(y1)))
ACTIVATE(n__and(n__and(x0, x1), y1)) → AND(and(activate(x0), x1), y1)
ACTIVATE(n__s(X)) → ACTIVATE(X)
ACTIVATE(n__and(X1, X2)) → ACTIVATE(X1)
ACTIVATE(n__isNatList(X)) → ISNATLIST(X)
ACTIVATE(n__and(n__isNat(x0), y1)) → AND(isNat(x0), y1)
ISNATLIST(n__cons(n__s(x0), y1)) → AND(isNat(s(activate(x0))), n__isNatList(activate(y1)))
ISNATILIST(n__cons(n__and(x0, x1), y1)) → AND(isNat(and(activate(x0), x1)), n__isNatIList(activate(y1)))
ISNAT(n__s(n__isNatIList(x0))) → ISNAT(isNatIList(x0))
ISNAT(n__s(n__isNat(x0))) → ISNAT(isNat(x0))
ACTIVATE(n__and(n__s(x0), y1)) → AND(s(activate(x0)), y1)
ISNAT(n__s(V1)) → ACTIVATE(V1)
AND(tt, X) → ACTIVATE(X)
ISNATILIST(n__cons(n__s(x0), y1)) → AND(isNat(s(activate(x0))), n__isNatIList(activate(y1)))
ISNAT(n__s(n__isNatList(x0))) → ISNAT(isNatList(x0))
ISNATLIST(n__cons(n__cons(x0, x1), y1)) → AND(isNat(cons(activate(x0), x1)), n__isNatList(activate(y1)))
ACTIVATE(n__and(x0, y1)) → AND(x0, y1)
ISNATILIST(n__cons(x0, y1)) → AND(isNat(x0), n__isNatIList(activate(y1)))
ISNAT(n__s(n__and(x0, x1))) → ISNAT(and(activate(x0), x1))
ACTIVATE(n__isNat(X)) → ISNAT(X)
ISNAT(n__s(n__length(x0))) → ISNAT(length(activate(x0)))
ACTIVATE(n__isNatIList(X)) → ISNATILIST(X)
ISNATILIST(n__cons(n__0, y1)) → AND(isNat(0), n__isNatIList(activate(y1)))
ISNAT(n__s(x0)) → ISNAT(x0)
Used ordering: Matrix interpretation [3]:
Non-tuple symbols:
M( U31(x1, ..., x4) ) = | | + | | · | x1 | + | | · | x2 | + | | · | x3 | + | | · | x4 |
M( and(x1, x2) ) = | | + | | · | x1 | + | | · | x2 |
M( take(x1, x2) ) = | | + | | · | x1 | + | | · | x2 |
M( isNatList(x1) ) = | | + | | · | x1 |
M( isNatIList(x1) ) = | | + | | · | x1 |
M( n__isNatIList(x1) ) = | | + | | · | x1 |
M( n__length(x1) ) = | | + | | · | x1 |
M( n__isNatList(x1) ) = | | + | | · | x1 |
M( n__cons(x1, x2) ) = | | + | | · | x1 | + | | · | x2 |
M( U11(x1, x2) ) = | | + | | · | x1 | + | | · | x2 |
M( n__and(x1, x2) ) = | | + | | · | x1 | + | | · | x2 |
M( cons(x1, x2) ) = | | + | | · | x1 | + | | · | x2 |
M( n__take(x1, x2) ) = | | + | | · | x1 | + | | · | x2 |
Tuple symbols:
M( ISNATLIST(x1) ) = | 1 | + | | · | x1 |
M( AND(x1, x2) ) = | 1 | + | | · | x1 | + | | · | x2 |
M( ISNATILIST(x1) ) = | 1 | + | | · | x1 |
M( ACTIVATE(x1) ) = | 1 | + | | · | x1 |
Matrix type:
We used a basic matrix type which is not further parametrizeable.
As matrix orders are CE-compatible, we used usable rules w.r.t. argument filtering in the order.
The following usable rules [17] were oriented:
isNatIList(X) → n__isNatIList(X)
cons(X1, X2) → n__cons(X1, X2)
isNatList(X) → n__isNatList(X)
nil → n__nil
and(X1, X2) → n__and(X1, X2)
isNat(X) → n__isNat(X)
activate(n__take(X1, X2)) → take(activate(X1), activate(X2))
activate(n__zeros) → zeros
take(0, IL) → U21(isNatIList(IL))
length(cons(N, L)) → U11(and(isNatList(activate(L)), n__isNat(N)), activate(L))
zeros → n__zeros
take(s(M), cons(N, IL)) → U31(and(isNatIList(activate(IL)), n__and(n__isNat(M), n__isNat(N))), activate(IL), M, N)
0 → n__0
take(X1, X2) → n__take(X1, X2)
s(X) → n__s(X)
length(X) → n__length(X)
activate(X) → X
activate(n__0) → 0
activate(n__length(X)) → length(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
isNatList(n__cons(V1, V2)) → and(isNat(activate(V1)), n__isNatList(activate(V2)))
isNatIList(V) → isNatList(activate(V))
activate(n__isNat(X)) → isNat(X)
activate(n__and(X1, X2)) → and(activate(X1), X2)
isNat(n__s(V1)) → isNat(activate(V1))
and(tt, X) → activate(X)
isNatIList(n__cons(V1, V2)) → and(isNat(activate(V1)), n__isNatIList(activate(V2)))
isNatList(n__take(V1, V2)) → and(isNat(activate(V1)), n__isNatIList(activate(V2)))
activate(n__isNatIList(X)) → isNatIList(X)
isNat(n__length(V1)) → isNatList(activate(V1))
activate(n__isNatList(X)) → isNatList(X)
activate(n__nil) → nil
isNat(n__0) → tt
U31(tt, IL, M, N) → cons(activate(N), n__take(activate(M), activate(IL)))
U21(tt) → nil
U11(tt, L) → s(length(activate(L)))
zeros → cons(0, n__zeros)
length(nil) → 0
isNatList(n__nil) → tt
isNatIList(n__zeros) → tt
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDPOrderProof
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
ISNAT(n__s(n__s(x0))) → ISNAT(s(activate(x0)))
ISNATLIST(n__cons(n__and(x0, x1), y1)) → AND(isNat(and(activate(x0), x1)), n__isNatList(activate(y1)))
ISNATLIST(n__cons(x0, y1)) → AND(isNat(x0), n__isNatList(activate(y1)))
ISNATILIST(n__cons(n__cons(x0, x1), y1)) → AND(isNat(cons(activate(x0), x1)), n__isNatIList(activate(y1)))
ISNATLIST(n__cons(n__0, y1)) → AND(isNat(0), n__isNatList(activate(y1)))
ACTIVATE(n__and(n__and(x0, x1), y1)) → AND(and(activate(x0), x1), y1)
ACTIVATE(n__and(X1, X2)) → ACTIVATE(X1)
ACTIVATE(n__s(X)) → ACTIVATE(X)
ACTIVATE(n__isNatList(X)) → ISNATLIST(X)
ACTIVATE(n__and(n__isNat(x0), y1)) → AND(isNat(x0), y1)
ISNATILIST(n__cons(n__and(x0, x1), y1)) → AND(isNat(and(activate(x0), x1)), n__isNatIList(activate(y1)))
ISNATLIST(n__cons(n__s(x0), y1)) → AND(isNat(s(activate(x0))), n__isNatList(activate(y1)))
ISNAT(n__s(n__isNatIList(x0))) → ISNAT(isNatIList(x0))
ISNAT(n__s(n__isNat(x0))) → ISNAT(isNat(x0))
ACTIVATE(n__and(n__s(x0), y1)) → AND(s(activate(x0)), y1)
ISNAT(n__s(V1)) → ACTIVATE(V1)
AND(tt, X) → ACTIVATE(X)
ISNATILIST(n__cons(n__s(x0), y1)) → AND(isNat(s(activate(x0))), n__isNatIList(activate(y1)))
ISNAT(n__s(n__isNatList(x0))) → ISNAT(isNatList(x0))
ISNATLIST(n__cons(n__cons(x0, x1), y1)) → AND(isNat(cons(activate(x0), x1)), n__isNatList(activate(y1)))
ACTIVATE(n__and(x0, y1)) → AND(x0, y1)
ISNATILIST(n__cons(x0, y1)) → AND(isNat(x0), n__isNatIList(activate(y1)))
ISNAT(n__s(n__and(x0, x1))) → ISNAT(and(activate(x0), x1))
ACTIVATE(n__isNat(X)) → ISNAT(X)
ISNATILIST(n__cons(n__0, y1)) → AND(isNat(0), n__isNatIList(activate(y1)))
ACTIVATE(n__isNatIList(X)) → ISNATILIST(X)
ISNAT(n__s(n__length(x0))) → ISNAT(length(activate(x0)))
ISNAT(n__s(x0)) → ISNAT(x0)
The TRS R consists of the following rules:
zeros → cons(0, n__zeros)
U11(tt, L) → s(length(activate(L)))
U21(tt) → nil
U31(tt, IL, M, N) → cons(activate(N), n__take(activate(M), activate(IL)))
and(tt, X) → activate(X)
isNat(n__0) → tt
isNat(n__length(V1)) → isNatList(activate(V1))
isNat(n__s(V1)) → isNat(activate(V1))
isNatIList(V) → isNatList(activate(V))
isNatIList(n__zeros) → tt
isNatIList(n__cons(V1, V2)) → and(isNat(activate(V1)), n__isNatIList(activate(V2)))
isNatList(n__nil) → tt
isNatList(n__cons(V1, V2)) → and(isNat(activate(V1)), n__isNatList(activate(V2)))
isNatList(n__take(V1, V2)) → and(isNat(activate(V1)), n__isNatIList(activate(V2)))
length(nil) → 0
length(cons(N, L)) → U11(and(isNatList(activate(L)), n__isNat(N)), activate(L))
take(0, IL) → U21(isNatIList(IL))
take(s(M), cons(N, IL)) → U31(and(isNatIList(activate(IL)), n__and(n__isNat(M), n__isNat(N))), activate(IL), M, N)
zeros → n__zeros
take(X1, X2) → n__take(X1, X2)
0 → n__0
length(X) → n__length(X)
s(X) → n__s(X)
cons(X1, X2) → n__cons(X1, X2)
isNatIList(X) → n__isNatIList(X)
nil → n__nil
isNatList(X) → n__isNatList(X)
isNat(X) → n__isNat(X)
and(X1, X2) → n__and(X1, X2)
activate(n__zeros) → zeros
activate(n__take(X1, X2)) → take(activate(X1), activate(X2))
activate(n__0) → 0
activate(n__length(X)) → length(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(n__isNatIList(X)) → isNatIList(X)
activate(n__nil) → nil
activate(n__isNatList(X)) → isNatList(X)
activate(n__isNat(X)) → isNat(X)
activate(n__and(X1, X2)) → and(activate(X1), X2)
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].
The following pairs can be oriented strictly and are deleted.
ISNAT(n__s(n__isNatIList(x0))) → ISNAT(isNatIList(x0))
The remaining pairs can at least be oriented weakly.
ISNAT(n__s(n__s(x0))) → ISNAT(s(activate(x0)))
ISNATLIST(n__cons(n__and(x0, x1), y1)) → AND(isNat(and(activate(x0), x1)), n__isNatList(activate(y1)))
ISNATLIST(n__cons(x0, y1)) → AND(isNat(x0), n__isNatList(activate(y1)))
ISNATILIST(n__cons(n__cons(x0, x1), y1)) → AND(isNat(cons(activate(x0), x1)), n__isNatIList(activate(y1)))
ISNATLIST(n__cons(n__0, y1)) → AND(isNat(0), n__isNatList(activate(y1)))
ACTIVATE(n__and(n__and(x0, x1), y1)) → AND(and(activate(x0), x1), y1)
ACTIVATE(n__and(X1, X2)) → ACTIVATE(X1)
ACTIVATE(n__s(X)) → ACTIVATE(X)
ACTIVATE(n__isNatList(X)) → ISNATLIST(X)
ACTIVATE(n__and(n__isNat(x0), y1)) → AND(isNat(x0), y1)
ISNATILIST(n__cons(n__and(x0, x1), y1)) → AND(isNat(and(activate(x0), x1)), n__isNatIList(activate(y1)))
ISNATLIST(n__cons(n__s(x0), y1)) → AND(isNat(s(activate(x0))), n__isNatList(activate(y1)))
ISNAT(n__s(n__isNat(x0))) → ISNAT(isNat(x0))
ACTIVATE(n__and(n__s(x0), y1)) → AND(s(activate(x0)), y1)
ISNAT(n__s(V1)) → ACTIVATE(V1)
AND(tt, X) → ACTIVATE(X)
ISNATILIST(n__cons(n__s(x0), y1)) → AND(isNat(s(activate(x0))), n__isNatIList(activate(y1)))
ISNAT(n__s(n__isNatList(x0))) → ISNAT(isNatList(x0))
ISNATLIST(n__cons(n__cons(x0, x1), y1)) → AND(isNat(cons(activate(x0), x1)), n__isNatList(activate(y1)))
ACTIVATE(n__and(x0, y1)) → AND(x0, y1)
ISNATILIST(n__cons(x0, y1)) → AND(isNat(x0), n__isNatIList(activate(y1)))
ISNAT(n__s(n__and(x0, x1))) → ISNAT(and(activate(x0), x1))
ACTIVATE(n__isNat(X)) → ISNAT(X)
ISNATILIST(n__cons(n__0, y1)) → AND(isNat(0), n__isNatIList(activate(y1)))
ACTIVATE(n__isNatIList(X)) → ISNATILIST(X)
ISNAT(n__s(n__length(x0))) → ISNAT(length(activate(x0)))
ISNAT(n__s(x0)) → ISNAT(x0)
Used ordering: Matrix interpretation [3]:
Non-tuple symbols:
M( U31(x1, ..., x4) ) = | | + | | · | x1 | + | | · | x2 | + | | · | x3 | + | | · | x4 |
M( and(x1, x2) ) = | | + | | · | x1 | + | | · | x2 |
M( take(x1, x2) ) = | | + | | · | x1 | + | | · | x2 |
M( isNatList(x1) ) = | | + | | · | x1 |
M( isNatIList(x1) ) = | | + | | · | x1 |
M( n__isNatIList(x1) ) = | | + | | · | x1 |
M( n__length(x1) ) = | | + | | · | x1 |
M( n__isNatList(x1) ) = | | + | | · | x1 |
M( n__cons(x1, x2) ) = | | + | | · | x1 | + | | · | x2 |
M( U11(x1, x2) ) = | | + | | · | x1 | + | | · | x2 |
M( n__and(x1, x2) ) = | | + | | · | x1 | + | | · | x2 |
M( cons(x1, x2) ) = | | + | | · | x1 | + | | · | x2 |
M( n__take(x1, x2) ) = | | + | | · | x1 | + | | · | x2 |
Tuple symbols:
M( ISNATLIST(x1) ) = | 0 | + | | · | x1 |
M( AND(x1, x2) ) = | 0 | + | | · | x1 | + | | · | x2 |
M( ISNATILIST(x1) ) = | 1 | + | | · | x1 |
M( ACTIVATE(x1) ) = | 0 | + | | · | x1 |
Matrix type:
We used a basic matrix type which is not further parametrizeable.
As matrix orders are CE-compatible, we used usable rules w.r.t. argument filtering in the order.
The following usable rules [17] were oriented:
isNatIList(X) → n__isNatIList(X)
cons(X1, X2) → n__cons(X1, X2)
isNatList(X) → n__isNatList(X)
nil → n__nil
and(X1, X2) → n__and(X1, X2)
isNat(X) → n__isNat(X)
activate(n__take(X1, X2)) → take(activate(X1), activate(X2))
activate(n__zeros) → zeros
take(0, IL) → U21(isNatIList(IL))
length(cons(N, L)) → U11(and(isNatList(activate(L)), n__isNat(N)), activate(L))
zeros → n__zeros
take(s(M), cons(N, IL)) → U31(and(isNatIList(activate(IL)), n__and(n__isNat(M), n__isNat(N))), activate(IL), M, N)
0 → n__0
take(X1, X2) → n__take(X1, X2)
s(X) → n__s(X)
length(X) → n__length(X)
activate(X) → X
activate(n__0) → 0
activate(n__length(X)) → length(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
isNatList(n__cons(V1, V2)) → and(isNat(activate(V1)), n__isNatList(activate(V2)))
isNatIList(V) → isNatList(activate(V))
activate(n__isNat(X)) → isNat(X)
activate(n__and(X1, X2)) → and(activate(X1), X2)
isNat(n__s(V1)) → isNat(activate(V1))
and(tt, X) → activate(X)
isNatIList(n__cons(V1, V2)) → and(isNat(activate(V1)), n__isNatIList(activate(V2)))
isNatList(n__take(V1, V2)) → and(isNat(activate(V1)), n__isNatIList(activate(V2)))
activate(n__isNatIList(X)) → isNatIList(X)
isNat(n__length(V1)) → isNatList(activate(V1))
activate(n__isNatList(X)) → isNatList(X)
activate(n__nil) → nil
isNat(n__0) → tt
U31(tt, IL, M, N) → cons(activate(N), n__take(activate(M), activate(IL)))
U21(tt) → nil
U11(tt, L) → s(length(activate(L)))
zeros → cons(0, n__zeros)
length(nil) → 0
isNatList(n__nil) → tt
isNatIList(n__zeros) → tt
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDPOrderProof
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
ISNAT(n__s(n__s(x0))) → ISNAT(s(activate(x0)))
ISNATLIST(n__cons(n__and(x0, x1), y1)) → AND(isNat(and(activate(x0), x1)), n__isNatList(activate(y1)))
ISNATLIST(n__cons(x0, y1)) → AND(isNat(x0), n__isNatList(activate(y1)))
ISNATLIST(n__cons(n__0, y1)) → AND(isNat(0), n__isNatList(activate(y1)))
ISNATILIST(n__cons(n__cons(x0, x1), y1)) → AND(isNat(cons(activate(x0), x1)), n__isNatIList(activate(y1)))
ACTIVATE(n__and(n__and(x0, x1), y1)) → AND(and(activate(x0), x1), y1)
ACTIVATE(n__s(X)) → ACTIVATE(X)
ACTIVATE(n__and(X1, X2)) → ACTIVATE(X1)
ACTIVATE(n__isNatList(X)) → ISNATLIST(X)
ACTIVATE(n__and(n__isNat(x0), y1)) → AND(isNat(x0), y1)
ISNATLIST(n__cons(n__s(x0), y1)) → AND(isNat(s(activate(x0))), n__isNatList(activate(y1)))
ISNATILIST(n__cons(n__and(x0, x1), y1)) → AND(isNat(and(activate(x0), x1)), n__isNatIList(activate(y1)))
ISNAT(n__s(n__isNat(x0))) → ISNAT(isNat(x0))
ACTIVATE(n__and(n__s(x0), y1)) → AND(s(activate(x0)), y1)
ISNAT(n__s(V1)) → ACTIVATE(V1)
AND(tt, X) → ACTIVATE(X)
ISNATILIST(n__cons(n__s(x0), y1)) → AND(isNat(s(activate(x0))), n__isNatIList(activate(y1)))
ISNAT(n__s(n__isNatList(x0))) → ISNAT(isNatList(x0))
ISNATLIST(n__cons(n__cons(x0, x1), y1)) → AND(isNat(cons(activate(x0), x1)), n__isNatList(activate(y1)))
ACTIVATE(n__and(x0, y1)) → AND(x0, y1)
ISNATILIST(n__cons(x0, y1)) → AND(isNat(x0), n__isNatIList(activate(y1)))
ISNAT(n__s(n__and(x0, x1))) → ISNAT(and(activate(x0), x1))
ACTIVATE(n__isNat(X)) → ISNAT(X)
ISNAT(n__s(n__length(x0))) → ISNAT(length(activate(x0)))
ISNATILIST(n__cons(n__0, y1)) → AND(isNat(0), n__isNatIList(activate(y1)))
ACTIVATE(n__isNatIList(X)) → ISNATILIST(X)
ISNAT(n__s(x0)) → ISNAT(x0)
The TRS R consists of the following rules:
zeros → cons(0, n__zeros)
U11(tt, L) → s(length(activate(L)))
U21(tt) → nil
U31(tt, IL, M, N) → cons(activate(N), n__take(activate(M), activate(IL)))
and(tt, X) → activate(X)
isNat(n__0) → tt
isNat(n__length(V1)) → isNatList(activate(V1))
isNat(n__s(V1)) → isNat(activate(V1))
isNatIList(V) → isNatList(activate(V))
isNatIList(n__zeros) → tt
isNatIList(n__cons(V1, V2)) → and(isNat(activate(V1)), n__isNatIList(activate(V2)))
isNatList(n__nil) → tt
isNatList(n__cons(V1, V2)) → and(isNat(activate(V1)), n__isNatList(activate(V2)))
isNatList(n__take(V1, V2)) → and(isNat(activate(V1)), n__isNatIList(activate(V2)))
length(nil) → 0
length(cons(N, L)) → U11(and(isNatList(activate(L)), n__isNat(N)), activate(L))
take(0, IL) → U21(isNatIList(IL))
take(s(M), cons(N, IL)) → U31(and(isNatIList(activate(IL)), n__and(n__isNat(M), n__isNat(N))), activate(IL), M, N)
zeros → n__zeros
take(X1, X2) → n__take(X1, X2)
0 → n__0
length(X) → n__length(X)
s(X) → n__s(X)
cons(X1, X2) → n__cons(X1, X2)
isNatIList(X) → n__isNatIList(X)
nil → n__nil
isNatList(X) → n__isNatList(X)
isNat(X) → n__isNat(X)
and(X1, X2) → n__and(X1, X2)
activate(n__zeros) → zeros
activate(n__take(X1, X2)) → take(activate(X1), activate(X2))
activate(n__0) → 0
activate(n__length(X)) → length(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(n__isNatIList(X)) → isNatIList(X)
activate(n__nil) → nil
activate(n__isNatList(X)) → isNatList(X)
activate(n__isNat(X)) → isNat(X)
activate(n__and(X1, X2)) → and(activate(X1), X2)
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].
The following pairs can be oriented strictly and are deleted.
ISNAT(n__s(n__isNatList(x0))) → ISNAT(isNatList(x0))
The remaining pairs can at least be oriented weakly.
ISNAT(n__s(n__s(x0))) → ISNAT(s(activate(x0)))
ISNATLIST(n__cons(n__and(x0, x1), y1)) → AND(isNat(and(activate(x0), x1)), n__isNatList(activate(y1)))
ISNATLIST(n__cons(x0, y1)) → AND(isNat(x0), n__isNatList(activate(y1)))
ISNATLIST(n__cons(n__0, y1)) → AND(isNat(0), n__isNatList(activate(y1)))
ISNATILIST(n__cons(n__cons(x0, x1), y1)) → AND(isNat(cons(activate(x0), x1)), n__isNatIList(activate(y1)))
ACTIVATE(n__and(n__and(x0, x1), y1)) → AND(and(activate(x0), x1), y1)
ACTIVATE(n__s(X)) → ACTIVATE(X)
ACTIVATE(n__and(X1, X2)) → ACTIVATE(X1)
ACTIVATE(n__isNatList(X)) → ISNATLIST(X)
ACTIVATE(n__and(n__isNat(x0), y1)) → AND(isNat(x0), y1)
ISNATLIST(n__cons(n__s(x0), y1)) → AND(isNat(s(activate(x0))), n__isNatList(activate(y1)))
ISNATILIST(n__cons(n__and(x0, x1), y1)) → AND(isNat(and(activate(x0), x1)), n__isNatIList(activate(y1)))
ISNAT(n__s(n__isNat(x0))) → ISNAT(isNat(x0))
ACTIVATE(n__and(n__s(x0), y1)) → AND(s(activate(x0)), y1)
ISNAT(n__s(V1)) → ACTIVATE(V1)
AND(tt, X) → ACTIVATE(X)
ISNATILIST(n__cons(n__s(x0), y1)) → AND(isNat(s(activate(x0))), n__isNatIList(activate(y1)))
ISNATLIST(n__cons(n__cons(x0, x1), y1)) → AND(isNat(cons(activate(x0), x1)), n__isNatList(activate(y1)))
ACTIVATE(n__and(x0, y1)) → AND(x0, y1)
ISNATILIST(n__cons(x0, y1)) → AND(isNat(x0), n__isNatIList(activate(y1)))
ISNAT(n__s(n__and(x0, x1))) → ISNAT(and(activate(x0), x1))
ACTIVATE(n__isNat(X)) → ISNAT(X)
ISNAT(n__s(n__length(x0))) → ISNAT(length(activate(x0)))
ISNATILIST(n__cons(n__0, y1)) → AND(isNat(0), n__isNatIList(activate(y1)))
ACTIVATE(n__isNatIList(X)) → ISNATILIST(X)
ISNAT(n__s(x0)) → ISNAT(x0)
Used ordering: Matrix interpretation [3]:
Non-tuple symbols:
M( U31(x1, ..., x4) ) = | | + | | · | x1 | + | | · | x2 | + | | · | x3 | + | | · | x4 |
M( and(x1, x2) ) = | | + | | · | x1 | + | | · | x2 |
M( take(x1, x2) ) = | | + | | · | x1 | + | | · | x2 |
M( isNatList(x1) ) = | | + | | · | x1 |
M( isNatIList(x1) ) = | | + | | · | x1 |
M( n__isNatIList(x1) ) = | | + | | · | x1 |
M( n__length(x1) ) = | | + | | · | x1 |
M( n__isNatList(x1) ) = | | + | | · | x1 |
M( n__cons(x1, x2) ) = | | + | | · | x1 | + | | · | x2 |
M( U11(x1, x2) ) = | | + | | · | x1 | + | | · | x2 |
M( n__and(x1, x2) ) = | | + | | · | x1 | + | | · | x2 |
M( cons(x1, x2) ) = | | + | | · | x1 | + | | · | x2 |
M( n__take(x1, x2) ) = | | + | | · | x1 | + | | · | x2 |
Tuple symbols:
M( ISNATLIST(x1) ) = | 1 | + | | · | x1 |
M( AND(x1, x2) ) = | 0 | + | | · | x1 | + | | · | x2 |
M( ISNATILIST(x1) ) = | 1 | + | | · | x1 |
M( ACTIVATE(x1) ) = | 0 | + | | · | x1 |
Matrix type:
We used a basic matrix type which is not further parametrizeable.
As matrix orders are CE-compatible, we used usable rules w.r.t. argument filtering in the order.
The following usable rules [17] were oriented:
isNatIList(X) → n__isNatIList(X)
cons(X1, X2) → n__cons(X1, X2)
isNatList(X) → n__isNatList(X)
nil → n__nil
and(X1, X2) → n__and(X1, X2)
isNat(X) → n__isNat(X)
activate(n__take(X1, X2)) → take(activate(X1), activate(X2))
activate(n__zeros) → zeros
take(0, IL) → U21(isNatIList(IL))
length(cons(N, L)) → U11(and(isNatList(activate(L)), n__isNat(N)), activate(L))
zeros → n__zeros
take(s(M), cons(N, IL)) → U31(and(isNatIList(activate(IL)), n__and(n__isNat(M), n__isNat(N))), activate(IL), M, N)
0 → n__0
take(X1, X2) → n__take(X1, X2)
s(X) → n__s(X)
length(X) → n__length(X)
activate(X) → X
activate(n__0) → 0
activate(n__length(X)) → length(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
isNatList(n__cons(V1, V2)) → and(isNat(activate(V1)), n__isNatList(activate(V2)))
isNatIList(V) → isNatList(activate(V))
activate(n__isNat(X)) → isNat(X)
activate(n__and(X1, X2)) → and(activate(X1), X2)
isNat(n__s(V1)) → isNat(activate(V1))
and(tt, X) → activate(X)
isNatIList(n__cons(V1, V2)) → and(isNat(activate(V1)), n__isNatIList(activate(V2)))
isNatList(n__take(V1, V2)) → and(isNat(activate(V1)), n__isNatIList(activate(V2)))
activate(n__isNatIList(X)) → isNatIList(X)
isNat(n__length(V1)) → isNatList(activate(V1))
activate(n__isNatList(X)) → isNatList(X)
activate(n__nil) → nil
isNat(n__0) → tt
U31(tt, IL, M, N) → cons(activate(N), n__take(activate(M), activate(IL)))
U21(tt) → nil
U11(tt, L) → s(length(activate(L)))
zeros → cons(0, n__zeros)
length(nil) → 0
isNatList(n__nil) → tt
isNatIList(n__zeros) → tt
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDPOrderProof
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
ISNAT(n__s(n__s(x0))) → ISNAT(s(activate(x0)))
ISNATLIST(n__cons(n__and(x0, x1), y1)) → AND(isNat(and(activate(x0), x1)), n__isNatList(activate(y1)))
ISNATLIST(n__cons(x0, y1)) → AND(isNat(x0), n__isNatList(activate(y1)))
ISNATILIST(n__cons(n__cons(x0, x1), y1)) → AND(isNat(cons(activate(x0), x1)), n__isNatIList(activate(y1)))
ISNATLIST(n__cons(n__0, y1)) → AND(isNat(0), n__isNatList(activate(y1)))
ACTIVATE(n__and(n__and(x0, x1), y1)) → AND(and(activate(x0), x1), y1)
ACTIVATE(n__and(X1, X2)) → ACTIVATE(X1)
ACTIVATE(n__s(X)) → ACTIVATE(X)
ACTIVATE(n__isNatList(X)) → ISNATLIST(X)
ACTIVATE(n__and(n__isNat(x0), y1)) → AND(isNat(x0), y1)
ISNATILIST(n__cons(n__and(x0, x1), y1)) → AND(isNat(and(activate(x0), x1)), n__isNatIList(activate(y1)))
ISNATLIST(n__cons(n__s(x0), y1)) → AND(isNat(s(activate(x0))), n__isNatList(activate(y1)))
ISNAT(n__s(n__isNat(x0))) → ISNAT(isNat(x0))
ACTIVATE(n__and(n__s(x0), y1)) → AND(s(activate(x0)), y1)
ISNAT(n__s(V1)) → ACTIVATE(V1)
AND(tt, X) → ACTIVATE(X)
ISNATILIST(n__cons(n__s(x0), y1)) → AND(isNat(s(activate(x0))), n__isNatIList(activate(y1)))
ISNATLIST(n__cons(n__cons(x0, x1), y1)) → AND(isNat(cons(activate(x0), x1)), n__isNatList(activate(y1)))
ACTIVATE(n__and(x0, y1)) → AND(x0, y1)
ISNATILIST(n__cons(x0, y1)) → AND(isNat(x0), n__isNatIList(activate(y1)))
ISNAT(n__s(n__and(x0, x1))) → ISNAT(and(activate(x0), x1))
ACTIVATE(n__isNat(X)) → ISNAT(X)
ISNAT(n__s(n__length(x0))) → ISNAT(length(activate(x0)))
ISNATILIST(n__cons(n__0, y1)) → AND(isNat(0), n__isNatIList(activate(y1)))
ACTIVATE(n__isNatIList(X)) → ISNATILIST(X)
ISNAT(n__s(x0)) → ISNAT(x0)
The TRS R consists of the following rules:
zeros → cons(0, n__zeros)
U11(tt, L) → s(length(activate(L)))
U21(tt) → nil
U31(tt, IL, M, N) → cons(activate(N), n__take(activate(M), activate(IL)))
and(tt, X) → activate(X)
isNat(n__0) → tt
isNat(n__length(V1)) → isNatList(activate(V1))
isNat(n__s(V1)) → isNat(activate(V1))
isNatIList(V) → isNatList(activate(V))
isNatIList(n__zeros) → tt
isNatIList(n__cons(V1, V2)) → and(isNat(activate(V1)), n__isNatIList(activate(V2)))
isNatList(n__nil) → tt
isNatList(n__cons(V1, V2)) → and(isNat(activate(V1)), n__isNatList(activate(V2)))
isNatList(n__take(V1, V2)) → and(isNat(activate(V1)), n__isNatIList(activate(V2)))
length(nil) → 0
length(cons(N, L)) → U11(and(isNatList(activate(L)), n__isNat(N)), activate(L))
take(0, IL) → U21(isNatIList(IL))
take(s(M), cons(N, IL)) → U31(and(isNatIList(activate(IL)), n__and(n__isNat(M), n__isNat(N))), activate(IL), M, N)
zeros → n__zeros
take(X1, X2) → n__take(X1, X2)
0 → n__0
length(X) → n__length(X)
s(X) → n__s(X)
cons(X1, X2) → n__cons(X1, X2)
isNatIList(X) → n__isNatIList(X)
nil → n__nil
isNatList(X) → n__isNatList(X)
isNat(X) → n__isNat(X)
and(X1, X2) → n__and(X1, X2)
activate(n__zeros) → zeros
activate(n__take(X1, X2)) → take(activate(X1), activate(X2))
activate(n__0) → 0
activate(n__length(X)) → length(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(n__isNatIList(X)) → isNatIList(X)
activate(n__nil) → nil
activate(n__isNatList(X)) → isNatList(X)
activate(n__isNat(X)) → isNat(X)
activate(n__and(X1, X2)) → and(activate(X1), X2)
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].
The following pairs can be oriented strictly and are deleted.
ISNATILIST(n__cons(n__cons(x0, x1), y1)) → AND(isNat(cons(activate(x0), x1)), n__isNatIList(activate(y1)))
ISNATLIST(n__cons(n__cons(x0, x1), y1)) → AND(isNat(cons(activate(x0), x1)), n__isNatList(activate(y1)))
The remaining pairs can at least be oriented weakly.
ISNAT(n__s(n__s(x0))) → ISNAT(s(activate(x0)))
ISNATLIST(n__cons(n__and(x0, x1), y1)) → AND(isNat(and(activate(x0), x1)), n__isNatList(activate(y1)))
ISNATLIST(n__cons(x0, y1)) → AND(isNat(x0), n__isNatList(activate(y1)))
ISNATLIST(n__cons(n__0, y1)) → AND(isNat(0), n__isNatList(activate(y1)))
ACTIVATE(n__and(n__and(x0, x1), y1)) → AND(and(activate(x0), x1), y1)
ACTIVATE(n__and(X1, X2)) → ACTIVATE(X1)
ACTIVATE(n__s(X)) → ACTIVATE(X)
ACTIVATE(n__isNatList(X)) → ISNATLIST(X)
ACTIVATE(n__and(n__isNat(x0), y1)) → AND(isNat(x0), y1)
ISNATILIST(n__cons(n__and(x0, x1), y1)) → AND(isNat(and(activate(x0), x1)), n__isNatIList(activate(y1)))
ISNATLIST(n__cons(n__s(x0), y1)) → AND(isNat(s(activate(x0))), n__isNatList(activate(y1)))
ISNAT(n__s(n__isNat(x0))) → ISNAT(isNat(x0))
ACTIVATE(n__and(n__s(x0), y1)) → AND(s(activate(x0)), y1)
ISNAT(n__s(V1)) → ACTIVATE(V1)
AND(tt, X) → ACTIVATE(X)
ISNATILIST(n__cons(n__s(x0), y1)) → AND(isNat(s(activate(x0))), n__isNatIList(activate(y1)))
ACTIVATE(n__and(x0, y1)) → AND(x0, y1)
ISNATILIST(n__cons(x0, y1)) → AND(isNat(x0), n__isNatIList(activate(y1)))
ISNAT(n__s(n__and(x0, x1))) → ISNAT(and(activate(x0), x1))
ACTIVATE(n__isNat(X)) → ISNAT(X)
ISNAT(n__s(n__length(x0))) → ISNAT(length(activate(x0)))
ISNATILIST(n__cons(n__0, y1)) → AND(isNat(0), n__isNatIList(activate(y1)))
ACTIVATE(n__isNatIList(X)) → ISNATILIST(X)
ISNAT(n__s(x0)) → ISNAT(x0)
Used ordering: Matrix interpretation [3]:
Non-tuple symbols:
M( U31(x1, ..., x4) ) = | | + | | · | x1 | + | | · | x2 | + | | · | x3 | + | | · | x4 |
M( and(x1, x2) ) = | | + | | · | x1 | + | | · | x2 |
M( take(x1, x2) ) = | | + | | · | x1 | + | | · | x2 |
M( isNatList(x1) ) = | | + | | · | x1 |
M( isNatIList(x1) ) = | | + | | · | x1 |
M( n__isNatIList(x1) ) = | | + | | · | x1 |
M( n__length(x1) ) = | | + | | · | x1 |
M( n__isNatList(x1) ) = | | + | | · | x1 |
M( n__cons(x1, x2) ) = | | + | | · | x1 | + | | · | x2 |
M( U11(x1, x2) ) = | | + | | · | x1 | + | | · | x2 |
M( n__and(x1, x2) ) = | | + | | · | x1 | + | | · | x2 |
M( cons(x1, x2) ) = | | + | | · | x1 | + | | · | x2 |
M( n__take(x1, x2) ) = | | + | | · | x1 | + | | · | x2 |
Tuple symbols:
M( ISNATLIST(x1) ) = | 0 | + | | · | x1 |
M( AND(x1, x2) ) = | 0 | + | | · | x1 | + | | · | x2 |
M( ISNATILIST(x1) ) = | 0 | + | | · | x1 |
M( ACTIVATE(x1) ) = | 0 | + | | · | x1 |
Matrix type:
We used a basic matrix type which is not further parametrizeable.
As matrix orders are CE-compatible, we used usable rules w.r.t. argument filtering in the order.
The following usable rules [17] were oriented:
isNatIList(X) → n__isNatIList(X)
cons(X1, X2) → n__cons(X1, X2)
isNatList(X) → n__isNatList(X)
nil → n__nil
and(X1, X2) → n__and(X1, X2)
isNat(X) → n__isNat(X)
activate(n__take(X1, X2)) → take(activate(X1), activate(X2))
activate(n__zeros) → zeros
take(0, IL) → U21(isNatIList(IL))
length(cons(N, L)) → U11(and(isNatList(activate(L)), n__isNat(N)), activate(L))
zeros → n__zeros
take(s(M), cons(N, IL)) → U31(and(isNatIList(activate(IL)), n__and(n__isNat(M), n__isNat(N))), activate(IL), M, N)
0 → n__0
take(X1, X2) → n__take(X1, X2)
s(X) → n__s(X)
length(X) → n__length(X)
activate(X) → X
activate(n__0) → 0
activate(n__length(X)) → length(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
isNatList(n__cons(V1, V2)) → and(isNat(activate(V1)), n__isNatList(activate(V2)))
isNatIList(V) → isNatList(activate(V))
activate(n__isNat(X)) → isNat(X)
activate(n__and(X1, X2)) → and(activate(X1), X2)
isNat(n__s(V1)) → isNat(activate(V1))
and(tt, X) → activate(X)
isNatIList(n__cons(V1, V2)) → and(isNat(activate(V1)), n__isNatIList(activate(V2)))
isNatList(n__take(V1, V2)) → and(isNat(activate(V1)), n__isNatIList(activate(V2)))
activate(n__isNatIList(X)) → isNatIList(X)
isNat(n__length(V1)) → isNatList(activate(V1))
activate(n__isNatList(X)) → isNatList(X)
activate(n__nil) → nil
isNat(n__0) → tt
U31(tt, IL, M, N) → cons(activate(N), n__take(activate(M), activate(IL)))
U21(tt) → nil
U11(tt, L) → s(length(activate(L)))
zeros → cons(0, n__zeros)
length(nil) → 0
isNatList(n__nil) → tt
isNatIList(n__zeros) → tt
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDPOrderProof
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
ISNAT(n__s(n__s(x0))) → ISNAT(s(activate(x0)))
ISNATLIST(n__cons(n__and(x0, x1), y1)) → AND(isNat(and(activate(x0), x1)), n__isNatList(activate(y1)))
ISNAT(n__s(n__isNat(x0))) → ISNAT(isNat(x0))
ISNATLIST(n__cons(x0, y1)) → AND(isNat(x0), n__isNatList(activate(y1)))
ISNATLIST(n__cons(n__0, y1)) → AND(isNat(0), n__isNatList(activate(y1)))
ACTIVATE(n__and(n__s(x0), y1)) → AND(s(activate(x0)), y1)
AND(tt, X) → ACTIVATE(X)
ISNAT(n__s(V1)) → ACTIVATE(V1)
ISNATILIST(n__cons(n__s(x0), y1)) → AND(isNat(s(activate(x0))), n__isNatIList(activate(y1)))
ACTIVATE(n__and(n__and(x0, x1), y1)) → AND(and(activate(x0), x1), y1)
ACTIVATE(n__and(x0, y1)) → AND(x0, y1)
ACTIVATE(n__and(X1, X2)) → ACTIVATE(X1)
ACTIVATE(n__s(X)) → ACTIVATE(X)
ISNATILIST(n__cons(x0, y1)) → AND(isNat(x0), n__isNatIList(activate(y1)))
ACTIVATE(n__isNatList(X)) → ISNATLIST(X)
ISNAT(n__s(n__and(x0, x1))) → ISNAT(and(activate(x0), x1))
ACTIVATE(n__and(n__isNat(x0), y1)) → AND(isNat(x0), y1)
ACTIVATE(n__isNat(X)) → ISNAT(X)
ACTIVATE(n__isNatIList(X)) → ISNATILIST(X)
ISNATILIST(n__cons(n__0, y1)) → AND(isNat(0), n__isNatIList(activate(y1)))
ISNAT(n__s(n__length(x0))) → ISNAT(length(activate(x0)))
ISNAT(n__s(x0)) → ISNAT(x0)
ISNATILIST(n__cons(n__and(x0, x1), y1)) → AND(isNat(and(activate(x0), x1)), n__isNatIList(activate(y1)))
ISNATLIST(n__cons(n__s(x0), y1)) → AND(isNat(s(activate(x0))), n__isNatList(activate(y1)))
The TRS R consists of the following rules:
zeros → cons(0, n__zeros)
U11(tt, L) → s(length(activate(L)))
U21(tt) → nil
U31(tt, IL, M, N) → cons(activate(N), n__take(activate(M), activate(IL)))
and(tt, X) → activate(X)
isNat(n__0) → tt
isNat(n__length(V1)) → isNatList(activate(V1))
isNat(n__s(V1)) → isNat(activate(V1))
isNatIList(V) → isNatList(activate(V))
isNatIList(n__zeros) → tt
isNatIList(n__cons(V1, V2)) → and(isNat(activate(V1)), n__isNatIList(activate(V2)))
isNatList(n__nil) → tt
isNatList(n__cons(V1, V2)) → and(isNat(activate(V1)), n__isNatList(activate(V2)))
isNatList(n__take(V1, V2)) → and(isNat(activate(V1)), n__isNatIList(activate(V2)))
length(nil) → 0
length(cons(N, L)) → U11(and(isNatList(activate(L)), n__isNat(N)), activate(L))
take(0, IL) → U21(isNatIList(IL))
take(s(M), cons(N, IL)) → U31(and(isNatIList(activate(IL)), n__and(n__isNat(M), n__isNat(N))), activate(IL), M, N)
zeros → n__zeros
take(X1, X2) → n__take(X1, X2)
0 → n__0
length(X) → n__length(X)
s(X) → n__s(X)
cons(X1, X2) → n__cons(X1, X2)
isNatIList(X) → n__isNatIList(X)
nil → n__nil
isNatList(X) → n__isNatList(X)
isNat(X) → n__isNat(X)
and(X1, X2) → n__and(X1, X2)
activate(n__zeros) → zeros
activate(n__take(X1, X2)) → take(activate(X1), activate(X2))
activate(n__0) → 0
activate(n__length(X)) → length(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(n__isNatIList(X)) → isNatIList(X)
activate(n__nil) → nil
activate(n__isNatList(X)) → isNatList(X)
activate(n__isNat(X)) → isNat(X)
activate(n__and(X1, X2)) → and(activate(X1), X2)
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].
The following pairs can be oriented strictly and are deleted.
ISNATILIST(n__cons(n__s(x0), y1)) → AND(isNat(s(activate(x0))), n__isNatIList(activate(y1)))
ISNATLIST(n__cons(n__s(x0), y1)) → AND(isNat(s(activate(x0))), n__isNatList(activate(y1)))
The remaining pairs can at least be oriented weakly.
ISNAT(n__s(n__s(x0))) → ISNAT(s(activate(x0)))
ISNATLIST(n__cons(n__and(x0, x1), y1)) → AND(isNat(and(activate(x0), x1)), n__isNatList(activate(y1)))
ISNAT(n__s(n__isNat(x0))) → ISNAT(isNat(x0))
ISNATLIST(n__cons(x0, y1)) → AND(isNat(x0), n__isNatList(activate(y1)))
ISNATLIST(n__cons(n__0, y1)) → AND(isNat(0), n__isNatList(activate(y1)))
ACTIVATE(n__and(n__s(x0), y1)) → AND(s(activate(x0)), y1)
AND(tt, X) → ACTIVATE(X)
ISNAT(n__s(V1)) → ACTIVATE(V1)
ACTIVATE(n__and(n__and(x0, x1), y1)) → AND(and(activate(x0), x1), y1)
ACTIVATE(n__and(x0, y1)) → AND(x0, y1)
ACTIVATE(n__and(X1, X2)) → ACTIVATE(X1)
ACTIVATE(n__s(X)) → ACTIVATE(X)
ISNATILIST(n__cons(x0, y1)) → AND(isNat(x0), n__isNatIList(activate(y1)))
ACTIVATE(n__isNatList(X)) → ISNATLIST(X)
ISNAT(n__s(n__and(x0, x1))) → ISNAT(and(activate(x0), x1))
ACTIVATE(n__and(n__isNat(x0), y1)) → AND(isNat(x0), y1)
ACTIVATE(n__isNat(X)) → ISNAT(X)
ACTIVATE(n__isNatIList(X)) → ISNATILIST(X)
ISNATILIST(n__cons(n__0, y1)) → AND(isNat(0), n__isNatIList(activate(y1)))
ISNAT(n__s(n__length(x0))) → ISNAT(length(activate(x0)))
ISNAT(n__s(x0)) → ISNAT(x0)
ISNATILIST(n__cons(n__and(x0, x1), y1)) → AND(isNat(and(activate(x0), x1)), n__isNatIList(activate(y1)))
Used ordering: Matrix interpretation [3]:
Non-tuple symbols:
M( U31(x1, ..., x4) ) = | | + | | · | x1 | + | | · | x2 | + | | · | x3 | + | | · | x4 |
M( and(x1, x2) ) = | | + | | · | x1 | + | | · | x2 |
M( take(x1, x2) ) = | | + | | · | x1 | + | | · | x2 |
M( isNatList(x1) ) = | | + | | · | x1 |
M( isNatIList(x1) ) = | | + | | · | x1 |
M( n__isNatIList(x1) ) = | | + | | · | x1 |
M( n__length(x1) ) = | | + | | · | x1 |
M( n__isNatList(x1) ) = | | + | | · | x1 |
M( n__cons(x1, x2) ) = | | + | | · | x1 | + | | · | x2 |
M( U11(x1, x2) ) = | | + | | · | x1 | + | | · | x2 |
M( n__and(x1, x2) ) = | | + | | · | x1 | + | | · | x2 |
M( cons(x1, x2) ) = | | + | | · | x1 | + | | · | x2 |
M( n__take(x1, x2) ) = | | + | | · | x1 | + | | · | x2 |
Tuple symbols:
M( ISNATLIST(x1) ) = | 0 | + | | · | x1 |
M( AND(x1, x2) ) = | 0 | + | | · | x1 | + | | · | x2 |
M( ISNATILIST(x1) ) = | 1 | + | | · | x1 |
M( ACTIVATE(x1) ) = | 0 | + | | · | x1 |
Matrix type:
We used a basic matrix type which is not further parametrizeable.
As matrix orders are CE-compatible, we used usable rules w.r.t. argument filtering in the order.
The following usable rules [17] were oriented:
isNatIList(X) → n__isNatIList(X)
cons(X1, X2) → n__cons(X1, X2)
isNatList(X) → n__isNatList(X)
nil → n__nil
and(X1, X2) → n__and(X1, X2)
isNat(X) → n__isNat(X)
activate(n__take(X1, X2)) → take(activate(X1), activate(X2))
activate(n__zeros) → zeros
take(0, IL) → U21(isNatIList(IL))
length(cons(N, L)) → U11(and(isNatList(activate(L)), n__isNat(N)), activate(L))
zeros → n__zeros
take(s(M), cons(N, IL)) → U31(and(isNatIList(activate(IL)), n__and(n__isNat(M), n__isNat(N))), activate(IL), M, N)
0 → n__0
take(X1, X2) → n__take(X1, X2)
s(X) → n__s(X)
length(X) → n__length(X)
activate(X) → X
activate(n__0) → 0
activate(n__length(X)) → length(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
isNatList(n__cons(V1, V2)) → and(isNat(activate(V1)), n__isNatList(activate(V2)))
isNatIList(V) → isNatList(activate(V))
activate(n__isNat(X)) → isNat(X)
activate(n__and(X1, X2)) → and(activate(X1), X2)
isNat(n__s(V1)) → isNat(activate(V1))
and(tt, X) → activate(X)
isNatIList(n__cons(V1, V2)) → and(isNat(activate(V1)), n__isNatIList(activate(V2)))
isNatList(n__take(V1, V2)) → and(isNat(activate(V1)), n__isNatIList(activate(V2)))
activate(n__isNatIList(X)) → isNatIList(X)
isNat(n__length(V1)) → isNatList(activate(V1))
activate(n__isNatList(X)) → isNatList(X)
activate(n__nil) → nil
isNat(n__0) → tt
U31(tt, IL, M, N) → cons(activate(N), n__take(activate(M), activate(IL)))
U21(tt) → nil
U11(tt, L) → s(length(activate(L)))
zeros → cons(0, n__zeros)
length(nil) → 0
isNatList(n__nil) → tt
isNatIList(n__zeros) → tt
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDPOrderProof
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
ISNAT(n__s(n__s(x0))) → ISNAT(s(activate(x0)))
ISNATLIST(n__cons(n__and(x0, x1), y1)) → AND(isNat(and(activate(x0), x1)), n__isNatList(activate(y1)))
ISNAT(n__s(n__isNat(x0))) → ISNAT(isNat(x0))
ISNATLIST(n__cons(x0, y1)) → AND(isNat(x0), n__isNatList(activate(y1)))
ISNATLIST(n__cons(n__0, y1)) → AND(isNat(0), n__isNatList(activate(y1)))
ACTIVATE(n__and(n__s(x0), y1)) → AND(s(activate(x0)), y1)
AND(tt, X) → ACTIVATE(X)
ISNAT(n__s(V1)) → ACTIVATE(V1)
ACTIVATE(n__and(n__and(x0, x1), y1)) → AND(and(activate(x0), x1), y1)
ACTIVATE(n__and(x0, y1)) → AND(x0, y1)
ACTIVATE(n__and(X1, X2)) → ACTIVATE(X1)
ACTIVATE(n__s(X)) → ACTIVATE(X)
ACTIVATE(n__isNatList(X)) → ISNATLIST(X)
ISNATILIST(n__cons(x0, y1)) → AND(isNat(x0), n__isNatIList(activate(y1)))
ACTIVATE(n__and(n__isNat(x0), y1)) → AND(isNat(x0), y1)
ISNAT(n__s(n__and(x0, x1))) → ISNAT(and(activate(x0), x1))
ACTIVATE(n__isNat(X)) → ISNAT(X)
ISNAT(n__s(n__length(x0))) → ISNAT(length(activate(x0)))
ISNATILIST(n__cons(n__0, y1)) → AND(isNat(0), n__isNatIList(activate(y1)))
ACTIVATE(n__isNatIList(X)) → ISNATILIST(X)
ISNAT(n__s(x0)) → ISNAT(x0)
ISNATILIST(n__cons(n__and(x0, x1), y1)) → AND(isNat(and(activate(x0), x1)), n__isNatIList(activate(y1)))
The TRS R consists of the following rules:
zeros → cons(0, n__zeros)
U11(tt, L) → s(length(activate(L)))
U21(tt) → nil
U31(tt, IL, M, N) → cons(activate(N), n__take(activate(M), activate(IL)))
and(tt, X) → activate(X)
isNat(n__0) → tt
isNat(n__length(V1)) → isNatList(activate(V1))
isNat(n__s(V1)) → isNat(activate(V1))
isNatIList(V) → isNatList(activate(V))
isNatIList(n__zeros) → tt
isNatIList(n__cons(V1, V2)) → and(isNat(activate(V1)), n__isNatIList(activate(V2)))
isNatList(n__nil) → tt
isNatList(n__cons(V1, V2)) → and(isNat(activate(V1)), n__isNatList(activate(V2)))
isNatList(n__take(V1, V2)) → and(isNat(activate(V1)), n__isNatIList(activate(V2)))
length(nil) → 0
length(cons(N, L)) → U11(and(isNatList(activate(L)), n__isNat(N)), activate(L))
take(0, IL) → U21(isNatIList(IL))
take(s(M), cons(N, IL)) → U31(and(isNatIList(activate(IL)), n__and(n__isNat(M), n__isNat(N))), activate(IL), M, N)
zeros → n__zeros
take(X1, X2) → n__take(X1, X2)
0 → n__0
length(X) → n__length(X)
s(X) → n__s(X)
cons(X1, X2) → n__cons(X1, X2)
isNatIList(X) → n__isNatIList(X)
nil → n__nil
isNatList(X) → n__isNatList(X)
isNat(X) → n__isNat(X)
and(X1, X2) → n__and(X1, X2)
activate(n__zeros) → zeros
activate(n__take(X1, X2)) → take(activate(X1), activate(X2))
activate(n__0) → 0
activate(n__length(X)) → length(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(n__isNatIList(X)) → isNatIList(X)
activate(n__nil) → nil
activate(n__isNatList(X)) → isNatList(X)
activate(n__isNat(X)) → isNat(X)
activate(n__and(X1, X2)) → and(activate(X1), X2)
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].
The following pairs can be oriented strictly and are deleted.
ISNAT(n__s(n__isNat(x0))) → ISNAT(isNat(x0))
The remaining pairs can at least be oriented weakly.
ISNAT(n__s(n__s(x0))) → ISNAT(s(activate(x0)))
ISNATLIST(n__cons(n__and(x0, x1), y1)) → AND(isNat(and(activate(x0), x1)), n__isNatList(activate(y1)))
ISNATLIST(n__cons(x0, y1)) → AND(isNat(x0), n__isNatList(activate(y1)))
ISNATLIST(n__cons(n__0, y1)) → AND(isNat(0), n__isNatList(activate(y1)))
ACTIVATE(n__and(n__s(x0), y1)) → AND(s(activate(x0)), y1)
AND(tt, X) → ACTIVATE(X)
ISNAT(n__s(V1)) → ACTIVATE(V1)
ACTIVATE(n__and(n__and(x0, x1), y1)) → AND(and(activate(x0), x1), y1)
ACTIVATE(n__and(x0, y1)) → AND(x0, y1)
ACTIVATE(n__and(X1, X2)) → ACTIVATE(X1)
ACTIVATE(n__s(X)) → ACTIVATE(X)
ACTIVATE(n__isNatList(X)) → ISNATLIST(X)
ISNATILIST(n__cons(x0, y1)) → AND(isNat(x0), n__isNatIList(activate(y1)))
ACTIVATE(n__and(n__isNat(x0), y1)) → AND(isNat(x0), y1)
ISNAT(n__s(n__and(x0, x1))) → ISNAT(and(activate(x0), x1))
ACTIVATE(n__isNat(X)) → ISNAT(X)
ISNAT(n__s(n__length(x0))) → ISNAT(length(activate(x0)))
ISNATILIST(n__cons(n__0, y1)) → AND(isNat(0), n__isNatIList(activate(y1)))
ACTIVATE(n__isNatIList(X)) → ISNATILIST(X)
ISNAT(n__s(x0)) → ISNAT(x0)
ISNATILIST(n__cons(n__and(x0, x1), y1)) → AND(isNat(and(activate(x0), x1)), n__isNatIList(activate(y1)))
Used ordering: Matrix interpretation [3]:
Non-tuple symbols:
M( U31(x1, ..., x4) ) = | | + | | · | x1 | + | | · | x2 | + | | · | x3 | + | | · | x4 |
M( and(x1, x2) ) = | | + | | · | x1 | + | | · | x2 |
M( take(x1, x2) ) = | | + | | · | x1 | + | | · | x2 |
M( isNatList(x1) ) = | | + | | · | x1 |
M( isNatIList(x1) ) = | | + | | · | x1 |
M( n__isNatIList(x1) ) = | | + | | · | x1 |
M( n__length(x1) ) = | | + | | · | x1 |
M( n__isNatList(x1) ) = | | + | | · | x1 |
M( n__cons(x1, x2) ) = | | + | | · | x1 | + | | · | x2 |
M( U11(x1, x2) ) = | | + | | · | x1 | + | | · | x2 |
M( n__and(x1, x2) ) = | | + | | · | x1 | + | | · | x2 |
M( cons(x1, x2) ) = | | + | | · | x1 | + | | · | x2 |
M( n__take(x1, x2) ) = | | + | | · | x1 | + | | · | x2 |
Tuple symbols:
M( ISNATLIST(x1) ) = | 0 | + | | · | x1 |
M( AND(x1, x2) ) = | 0 | + | | · | x1 | + | | · | x2 |
M( ISNATILIST(x1) ) = | 0 | + | | · | x1 |
M( ACTIVATE(x1) ) = | 0 | + | | · | x1 |
Matrix type:
We used a basic matrix type which is not further parametrizeable.
As matrix orders are CE-compatible, we used usable rules w.r.t. argument filtering in the order.
The following usable rules [17] were oriented:
isNatIList(X) → n__isNatIList(X)
cons(X1, X2) → n__cons(X1, X2)
isNatList(X) → n__isNatList(X)
nil → n__nil
and(X1, X2) → n__and(X1, X2)
isNat(X) → n__isNat(X)
activate(n__take(X1, X2)) → take(activate(X1), activate(X2))
activate(n__zeros) → zeros
take(0, IL) → U21(isNatIList(IL))
length(cons(N, L)) → U11(and(isNatList(activate(L)), n__isNat(N)), activate(L))
zeros → n__zeros
take(s(M), cons(N, IL)) → U31(and(isNatIList(activate(IL)), n__and(n__isNat(M), n__isNat(N))), activate(IL), M, N)
0 → n__0
take(X1, X2) → n__take(X1, X2)
s(X) → n__s(X)
length(X) → n__length(X)
activate(X) → X
activate(n__0) → 0
activate(n__length(X)) → length(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
isNatList(n__cons(V1, V2)) → and(isNat(activate(V1)), n__isNatList(activate(V2)))
isNatIList(V) → isNatList(activate(V))
activate(n__isNat(X)) → isNat(X)
activate(n__and(X1, X2)) → and(activate(X1), X2)
isNat(n__s(V1)) → isNat(activate(V1))
and(tt, X) → activate(X)
isNatIList(n__cons(V1, V2)) → and(isNat(activate(V1)), n__isNatIList(activate(V2)))
isNatList(n__take(V1, V2)) → and(isNat(activate(V1)), n__isNatIList(activate(V2)))
activate(n__isNatIList(X)) → isNatIList(X)
isNat(n__length(V1)) → isNatList(activate(V1))
activate(n__isNatList(X)) → isNatList(X)
activate(n__nil) → nil
isNat(n__0) → tt
U31(tt, IL, M, N) → cons(activate(N), n__take(activate(M), activate(IL)))
U21(tt) → nil
U11(tt, L) → s(length(activate(L)))
zeros → cons(0, n__zeros)
length(nil) → 0
isNatList(n__nil) → tt
isNatIList(n__zeros) → tt
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDPOrderProof
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
ISNAT(n__s(n__s(x0))) → ISNAT(s(activate(x0)))
ISNATLIST(n__cons(n__and(x0, x1), y1)) → AND(isNat(and(activate(x0), x1)), n__isNatList(activate(y1)))
ISNATLIST(n__cons(x0, y1)) → AND(isNat(x0), n__isNatList(activate(y1)))
ISNATLIST(n__cons(n__0, y1)) → AND(isNat(0), n__isNatList(activate(y1)))
ACTIVATE(n__and(n__s(x0), y1)) → AND(s(activate(x0)), y1)
AND(tt, X) → ACTIVATE(X)
ISNAT(n__s(V1)) → ACTIVATE(V1)
ACTIVATE(n__and(n__and(x0, x1), y1)) → AND(and(activate(x0), x1), y1)
ACTIVATE(n__and(x0, y1)) → AND(x0, y1)
ACTIVATE(n__and(X1, X2)) → ACTIVATE(X1)
ACTIVATE(n__s(X)) → ACTIVATE(X)
ACTIVATE(n__isNatList(X)) → ISNATLIST(X)
ISNATILIST(n__cons(x0, y1)) → AND(isNat(x0), n__isNatIList(activate(y1)))
ISNAT(n__s(n__and(x0, x1))) → ISNAT(and(activate(x0), x1))
ACTIVATE(n__and(n__isNat(x0), y1)) → AND(isNat(x0), y1)
ACTIVATE(n__isNat(X)) → ISNAT(X)
ACTIVATE(n__isNatIList(X)) → ISNATILIST(X)
ISNATILIST(n__cons(n__0, y1)) → AND(isNat(0), n__isNatIList(activate(y1)))
ISNAT(n__s(n__length(x0))) → ISNAT(length(activate(x0)))
ISNAT(n__s(x0)) → ISNAT(x0)
ISNATILIST(n__cons(n__and(x0, x1), y1)) → AND(isNat(and(activate(x0), x1)), n__isNatIList(activate(y1)))
The TRS R consists of the following rules:
zeros → cons(0, n__zeros)
U11(tt, L) → s(length(activate(L)))
U21(tt) → nil
U31(tt, IL, M, N) → cons(activate(N), n__take(activate(M), activate(IL)))
and(tt, X) → activate(X)
isNat(n__0) → tt
isNat(n__length(V1)) → isNatList(activate(V1))
isNat(n__s(V1)) → isNat(activate(V1))
isNatIList(V) → isNatList(activate(V))
isNatIList(n__zeros) → tt
isNatIList(n__cons(V1, V2)) → and(isNat(activate(V1)), n__isNatIList(activate(V2)))
isNatList(n__nil) → tt
isNatList(n__cons(V1, V2)) → and(isNat(activate(V1)), n__isNatList(activate(V2)))
isNatList(n__take(V1, V2)) → and(isNat(activate(V1)), n__isNatIList(activate(V2)))
length(nil) → 0
length(cons(N, L)) → U11(and(isNatList(activate(L)), n__isNat(N)), activate(L))
take(0, IL) → U21(isNatIList(IL))
take(s(M), cons(N, IL)) → U31(and(isNatIList(activate(IL)), n__and(n__isNat(M), n__isNat(N))), activate(IL), M, N)
zeros → n__zeros
take(X1, X2) → n__take(X1, X2)
0 → n__0
length(X) → n__length(X)
s(X) → n__s(X)
cons(X1, X2) → n__cons(X1, X2)
isNatIList(X) → n__isNatIList(X)
nil → n__nil
isNatList(X) → n__isNatList(X)
isNat(X) → n__isNat(X)
and(X1, X2) → n__and(X1, X2)
activate(n__zeros) → zeros
activate(n__take(X1, X2)) → take(activate(X1), activate(X2))
activate(n__0) → 0
activate(n__length(X)) → length(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(n__isNatIList(X)) → isNatIList(X)
activate(n__nil) → nil
activate(n__isNatList(X)) → isNatList(X)
activate(n__isNat(X)) → isNat(X)
activate(n__and(X1, X2)) → and(activate(X1), X2)
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].
The following pairs can be oriented strictly and are deleted.
ACTIVATE(n__and(n__s(x0), y1)) → AND(s(activate(x0)), y1)
The remaining pairs can at least be oriented weakly.
ISNAT(n__s(n__s(x0))) → ISNAT(s(activate(x0)))
ISNATLIST(n__cons(n__and(x0, x1), y1)) → AND(isNat(and(activate(x0), x1)), n__isNatList(activate(y1)))
ISNATLIST(n__cons(x0, y1)) → AND(isNat(x0), n__isNatList(activate(y1)))
ISNATLIST(n__cons(n__0, y1)) → AND(isNat(0), n__isNatList(activate(y1)))
AND(tt, X) → ACTIVATE(X)
ISNAT(n__s(V1)) → ACTIVATE(V1)
ACTIVATE(n__and(n__and(x0, x1), y1)) → AND(and(activate(x0), x1), y1)
ACTIVATE(n__and(x0, y1)) → AND(x0, y1)
ACTIVATE(n__and(X1, X2)) → ACTIVATE(X1)
ACTIVATE(n__s(X)) → ACTIVATE(X)
ACTIVATE(n__isNatList(X)) → ISNATLIST(X)
ISNATILIST(n__cons(x0, y1)) → AND(isNat(x0), n__isNatIList(activate(y1)))
ISNAT(n__s(n__and(x0, x1))) → ISNAT(and(activate(x0), x1))
ACTIVATE(n__and(n__isNat(x0), y1)) → AND(isNat(x0), y1)
ACTIVATE(n__isNat(X)) → ISNAT(X)
ACTIVATE(n__isNatIList(X)) → ISNATILIST(X)
ISNATILIST(n__cons(n__0, y1)) → AND(isNat(0), n__isNatIList(activate(y1)))
ISNAT(n__s(n__length(x0))) → ISNAT(length(activate(x0)))
ISNAT(n__s(x0)) → ISNAT(x0)
ISNATILIST(n__cons(n__and(x0, x1), y1)) → AND(isNat(and(activate(x0), x1)), n__isNatIList(activate(y1)))
Used ordering: Matrix interpretation [3]:
Non-tuple symbols:
M( U31(x1, ..., x4) ) = | | + | | · | x1 | + | | · | x2 | + | | · | x3 | + | | · | x4 |
M( and(x1, x2) ) = | | + | | · | x1 | + | | · | x2 |
M( take(x1, x2) ) = | | + | | · | x1 | + | | · | x2 |
M( isNatList(x1) ) = | | + | | · | x1 |
M( isNatIList(x1) ) = | | + | | · | x1 |
M( n__isNatIList(x1) ) = | | + | | · | x1 |
M( n__length(x1) ) = | | + | | · | x1 |
M( n__isNatList(x1) ) = | | + | | · | x1 |
M( n__cons(x1, x2) ) = | | + | | · | x1 | + | | · | x2 |
M( U11(x1, x2) ) = | | + | | · | x1 | + | | · | x2 |
M( n__and(x1, x2) ) = | | + | | · | x1 | + | | · | x2 |
M( cons(x1, x2) ) = | | + | | · | x1 | + | | · | x2 |
M( n__take(x1, x2) ) = | | + | | · | x1 | + | | · | x2 |
Tuple symbols:
M( ISNATLIST(x1) ) = | 0 | + | | · | x1 |
M( AND(x1, x2) ) = | 0 | + | | · | x1 | + | | · | x2 |
M( ISNATILIST(x1) ) = | 0 | + | | · | x1 |
M( ACTIVATE(x1) ) = | 0 | + | | · | x1 |
Matrix type:
We used a basic matrix type which is not further parametrizeable.
As matrix orders are CE-compatible, we used usable rules w.r.t. argument filtering in the order.
The following usable rules [17] were oriented:
isNatIList(X) → n__isNatIList(X)
cons(X1, X2) → n__cons(X1, X2)
isNatList(X) → n__isNatList(X)
nil → n__nil
and(X1, X2) → n__and(X1, X2)
isNat(X) → n__isNat(X)
activate(n__take(X1, X2)) → take(activate(X1), activate(X2))
activate(n__zeros) → zeros
take(0, IL) → U21(isNatIList(IL))
length(cons(N, L)) → U11(and(isNatList(activate(L)), n__isNat(N)), activate(L))
zeros → n__zeros
take(s(M), cons(N, IL)) → U31(and(isNatIList(activate(IL)), n__and(n__isNat(M), n__isNat(N))), activate(IL), M, N)
0 → n__0
take(X1, X2) → n__take(X1, X2)
s(X) → n__s(X)
length(X) → n__length(X)
activate(X) → X
activate(n__0) → 0
activate(n__length(X)) → length(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
isNatList(n__cons(V1, V2)) → and(isNat(activate(V1)), n__isNatList(activate(V2)))
isNatIList(V) → isNatList(activate(V))
activate(n__isNat(X)) → isNat(X)
activate(n__and(X1, X2)) → and(activate(X1), X2)
isNat(n__s(V1)) → isNat(activate(V1))
and(tt, X) → activate(X)
isNatIList(n__cons(V1, V2)) → and(isNat(activate(V1)), n__isNatIList(activate(V2)))
isNatList(n__take(V1, V2)) → and(isNat(activate(V1)), n__isNatIList(activate(V2)))
activate(n__isNatIList(X)) → isNatIList(X)
isNat(n__length(V1)) → isNatList(activate(V1))
activate(n__isNatList(X)) → isNatList(X)
activate(n__nil) → nil
isNat(n__0) → tt
U31(tt, IL, M, N) → cons(activate(N), n__take(activate(M), activate(IL)))
U21(tt) → nil
U11(tt, L) → s(length(activate(L)))
zeros → cons(0, n__zeros)
length(nil) → 0
isNatList(n__nil) → tt
isNatIList(n__zeros) → tt
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ SemLabProof
↳ SemLabProof2
↳ QDPOrderProof
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
ISNAT(n__s(n__s(x0))) → ISNAT(s(activate(x0)))
ISNATLIST(n__cons(n__and(x0, x1), y1)) → AND(isNat(and(activate(x0), x1)), n__isNatList(activate(y1)))
ISNATLIST(n__cons(x0, y1)) → AND(isNat(x0), n__isNatList(activate(y1)))
ISNATLIST(n__cons(n__0, y1)) → AND(isNat(0), n__isNatList(activate(y1)))
AND(tt, X) → ACTIVATE(X)
ISNAT(n__s(V1)) → ACTIVATE(V1)
ACTIVATE(n__and(n__and(x0, x1), y1)) → AND(and(activate(x0), x1), y1)
ACTIVATE(n__and(x0, y1)) → AND(x0, y1)
ACTIVATE(n__and(X1, X2)) → ACTIVATE(X1)
ACTIVATE(n__s(X)) → ACTIVATE(X)
ACTIVATE(n__isNatList(X)) → ISNATLIST(X)
ISNATILIST(n__cons(x0, y1)) → AND(isNat(x0), n__isNatIList(activate(y1)))
ACTIVATE(n__and(n__isNat(x0), y1)) → AND(isNat(x0), y1)
ISNAT(n__s(n__and(x0, x1))) → ISNAT(and(activate(x0), x1))
ACTIVATE(n__isNat(X)) → ISNAT(X)
ISNAT(n__s(n__length(x0))) → ISNAT(length(activate(x0)))
ISNATILIST(n__cons(n__0, y1)) → AND(isNat(0), n__isNatIList(activate(y1)))
ACTIVATE(n__isNatIList(X)) → ISNATILIST(X)
ISNAT(n__s(x0)) → ISNAT(x0)
ISNATILIST(n__cons(n__and(x0, x1), y1)) → AND(isNat(and(activate(x0), x1)), n__isNatIList(activate(y1)))
The TRS R consists of the following rules:
zeros → cons(0, n__zeros)
U11(tt, L) → s(length(activate(L)))
U21(tt) → nil
U31(tt, IL, M, N) → cons(activate(N), n__take(activate(M), activate(IL)))
and(tt, X) → activate(X)
isNat(n__0) → tt
isNat(n__length(V1)) → isNatList(activate(V1))
isNat(n__s(V1)) → isNat(activate(V1))
isNatIList(V) → isNatList(activate(V))
isNatIList(n__zeros) → tt
isNatIList(n__cons(V1, V2)) → and(isNat(activate(V1)), n__isNatIList(activate(V2)))
isNatList(n__nil) → tt
isNatList(n__cons(V1, V2)) → and(isNat(activate(V1)), n__isNatList(activate(V2)))
isNatList(n__take(V1, V2)) → and(isNat(activate(V1)), n__isNatIList(activate(V2)))
length(nil) → 0
length(cons(N, L)) → U11(and(isNatList(activate(L)), n__isNat(N)), activate(L))
take(0, IL) → U21(isNatIList(IL))
take(s(M), cons(N, IL)) → U31(and(isNatIList(activate(IL)), n__and(n__isNat(M), n__isNat(N))), activate(IL), M, N)
zeros → n__zeros
take(X1, X2) → n__take(X1, X2)
0 → n__0
length(X) → n__length(X)
s(X) → n__s(X)
cons(X1, X2) → n__cons(X1, X2)
isNatIList(X) → n__isNatIList(X)
nil → n__nil
isNatList(X) → n__isNatList(X)
isNat(X) → n__isNat(X)
and(X1, X2) → n__and(X1, X2)
activate(n__zeros) → zeros
activate(n__take(X1, X2)) → take(activate(X1), activate(X2))
activate(n__0) → 0
activate(n__length(X)) → length(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(n__isNatIList(X)) → isNatIList(X)
activate(n__nil) → nil
activate(n__isNatList(X)) → isNatList(X)
activate(n__isNat(X)) → isNat(X)
activate(n__and(X1, X2)) → and(activate(X1), X2)
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We found the following model for the rules of the TRS R.
Interpretation over the domain with elements from 0 to 1.U31: 0
n__isNat: 1
ISNATILIST: 0
activate: x0
n__nil: 0
n__s: 0
and: x1
take: 0
ISNATLIST: 0
tt: 1
isNatList: 1
AND: 0
zeros: 0
isNatIList: 1
s: 0
isNat: 1
nil: 0
ACTIVATE: 0
n__isNatIList: 1
n__length: 0
n__zeros: 0
n__cons: 0
n__isNatList: 1
U11: 0
0: 0
ISNAT: 0
n__and: x1
cons: 0
n__0: 0
n__take: 0
length: 0
U21: 0
By semantic labelling [33] we obtain the following labelled TRS:Q DP problem:
The TRS P consists of the following rules:
ISNAT.0(n__s.0(n__and.0-0(x0, x1))) → ISNAT.0(and.0-0(activate.0(x0), x1))
ACTIVATE.0(n__and.1-0(X1, X2)) → ACTIVATE.1(X1)
ISNATILIST.0(n__cons.0-1(x0, y1)) → AND.1-1(isNat.0(x0), n__isNatIList.1(activate.1(y1)))
ISNAT.0(n__s.0(V1)) → ACTIVATE.0(V1)
ISNAT.0(n__s.1(x0)) → ISNAT.1(x0)
ISNATILIST.0(n__cons.1-1(n__and.1-1(x0, x1), y1)) → AND.1-1(isNat.1(and.1-1(activate.1(x0), x1)), n__isNatIList.1(activate.1(y1)))
ISNATILIST.0(n__cons.1-1(n__and.0-1(x0, x1), y1)) → AND.1-1(isNat.1(and.0-1(activate.0(x0), x1)), n__isNatIList.1(activate.1(y1)))
ACTIVATE.1(n__isNat.0(X)) → ISNAT.0(X)
ACTIVATE.1(n__isNat.1(X)) → ISNAT.1(X)
ISNATILIST.0(n__cons.1-0(x0, y1)) → AND.1-1(isNat.1(x0), n__isNatIList.0(activate.0(y1)))
ISNATLIST.0(n__cons.0-1(x0, y1)) → AND.1-1(isNat.0(x0), n__isNatList.1(activate.1(y1)))
ISNATILIST.0(n__cons.1-0(n__and.0-1(x0, x1), y1)) → AND.1-1(isNat.1(and.0-1(activate.0(x0), x1)), n__isNatIList.0(activate.0(y1)))
ISNAT.0(n__s.1(V1)) → ACTIVATE.1(V1)
ISNAT.0(n__s.1(n__and.0-1(x0, x1))) → ISNAT.1(and.0-1(activate.0(x0), x1))
ISNAT.0(n__s.0(n__s.1(x0))) → ISNAT.0(s.1(activate.1(x0)))
ISNATLIST.0(n__cons.0-1(n__and.1-0(x0, x1), y1)) → AND.1-1(isNat.0(and.1-0(activate.1(x0), x1)), n__isNatList.1(activate.1(y1)))
ISNATLIST.0(n__cons.0-0(n__and.1-0(x0, x1), y1)) → AND.1-1(isNat.0(and.1-0(activate.1(x0), x1)), n__isNatList.0(activate.0(y1)))
ACTIVATE.0(n__s.1(X)) → ACTIVATE.1(X)
ISNATLIST.0(n__cons.1-1(n__and.0-1(x0, x1), y1)) → AND.1-1(isNat.1(and.0-1(activate.0(x0), x1)), n__isNatList.1(activate.1(y1)))
ISNATILIST.0(n__cons.0-1(n__and.0-0(x0, x1), y1)) → AND.1-1(isNat.0(and.0-0(activate.0(x0), x1)), n__isNatIList.1(activate.1(y1)))
ISNAT.0(n__s.0(n__and.1-0(x0, x1))) → ISNAT.0(and.1-0(activate.1(x0), x1))
ACTIVATE.0(n__and.1-0(n__isNat.0(x0), y1)) → AND.1-0(isNat.0(x0), y1)
ISNATLIST.0(n__cons.0-0(n__0., y1)) → AND.1-1(isNat.0(0.), n__isNatList.0(activate.0(y1)))
ACTIVATE.0(n__and.0-0(n__and.1-0(x0, x1), y1)) → AND.0-0(and.1-0(activate.1(x0), x1), y1)
ISNATILIST.0(n__cons.0-0(n__0., y1)) → AND.1-1(isNat.0(0.), n__isNatIList.0(activate.0(y1)))
ACTIVATE.1(n__isNatIList.1(X)) → ISNATILIST.1(X)
ACTIVATE.1(n__isNatList.0(X)) → ISNATLIST.0(X)
ACTIVATE.1(n__and.1-1(n__isNat.1(x0), y1)) → AND.1-1(isNat.1(x0), y1)
ACTIVATE.0(n__and.0-0(x0, y1)) → AND.0-0(x0, y1)
ISNAT.0(n__s.0(n__s.0(x0))) → ISNAT.0(s.0(activate.0(x0)))
ISNATLIST.0(n__cons.1-0(n__and.1-1(x0, x1), y1)) → AND.1-1(isNat.1(and.1-1(activate.1(x0), x1)), n__isNatList.0(activate.0(y1)))
ACTIVATE.1(n__and.1-1(X1, X2)) → ACTIVATE.1(X1)
ACTIVATE.0(n__and.1-0(n__and.1-1(x0, x1), y1)) → AND.1-0(and.1-1(activate.1(x0), x1), y1)
ISNATLIST.0(n__cons.0-0(x0, y1)) → AND.1-1(isNat.0(x0), n__isNatList.0(activate.0(y1)))
ACTIVATE.1(n__and.1-1(n__and.1-1(x0, x1), y1)) → AND.1-1(and.1-1(activate.1(x0), x1), y1)
ISNATLIST.0(n__cons.0-0(n__and.0-0(x0, x1), y1)) → AND.1-1(isNat.0(and.0-0(activate.0(x0), x1)), n__isNatList.0(activate.0(y1)))
ISNATLIST.0(n__cons.1-1(x0, y1)) → AND.1-1(isNat.1(x0), n__isNatList.1(activate.1(y1)))
ISNATILIST.0(n__cons.0-0(x0, y1)) → AND.1-1(isNat.0(x0), n__isNatIList.0(activate.0(y1)))
ACTIVATE.0(n__and.1-0(x0, y1)) → AND.1-0(x0, y1)
ACTIVATE.1(n__isNatList.1(X)) → ISNATLIST.1(X)
ACTIVATE.0(n__and.0-0(X1, X2)) → ACTIVATE.0(X1)
ISNATILIST.0(n__cons.0-1(n__and.1-0(x0, x1), y1)) → AND.1-1(isNat.0(and.1-0(activate.1(x0), x1)), n__isNatIList.1(activate.1(y1)))
AND.1-1(tt., X) → ACTIVATE.1(X)
ACTIVATE.0(n__and.1-0(n__and.0-1(x0, x1), y1)) → AND.1-0(and.0-1(activate.0(x0), x1), y1)
ISNATILIST.0(n__cons.1-0(n__and.1-1(x0, x1), y1)) → AND.1-1(isNat.1(and.1-1(activate.1(x0), x1)), n__isNatIList.0(activate.0(y1)))
ACTIVATE.1(n__and.1-1(n__and.0-1(x0, x1), y1)) → AND.1-1(and.0-1(activate.0(x0), x1), y1)
ISNATILIST.0(n__cons.1-1(x0, y1)) → AND.1-1(isNat.1(x0), n__isNatIList.1(activate.1(y1)))
ISNAT.0(n__s.0(x0)) → ISNAT.0(x0)
ISNATILIST.0(n__cons.0-1(n__0., y1)) → AND.1-1(isNat.0(0.), n__isNatIList.1(activate.1(y1)))
ACTIVATE.1(n__isNatIList.0(X)) → ISNATILIST.0(X)
ISNATLIST.0(n__cons.0-1(n__and.0-0(x0, x1), y1)) → AND.1-1(isNat.0(and.0-0(activate.0(x0), x1)), n__isNatList.1(activate.1(y1)))
ISNATLIST.0(n__cons.1-0(x0, y1)) → AND.1-1(isNat.1(x0), n__isNatList.0(activate.0(y1)))
ISNAT.0(n__s.0(n__length.0(x0))) → ISNAT.0(length.0(activate.0(x0)))
ISNATLIST.0(n__cons.0-1(n__0., y1)) → AND.1-1(isNat.0(0.), n__isNatList.1(activate.1(y1)))
ACTIVATE.1(n__and.1-1(n__isNat.0(x0), y1)) → AND.1-1(isNat.0(x0), y1)
ACTIVATE.1(n__and.0-1(X1, X2)) → ACTIVATE.0(X1)
ISNATILIST.0(n__cons.0-0(n__and.1-0(x0, x1), y1)) → AND.1-1(isNat.0(and.1-0(activate.1(x0), x1)), n__isNatIList.0(activate.0(y1)))
ACTIVATE.0(n__and.1-0(n__isNat.1(x0), y1)) → AND.1-0(isNat.1(x0), y1)
ACTIVATE.0(n__s.0(X)) → ACTIVATE.0(X)
ISNATLIST.0(n__cons.1-0(n__and.0-1(x0, x1), y1)) → AND.1-1(isNat.1(and.0-1(activate.0(x0), x1)), n__isNatList.0(activate.0(y1)))
AND.1-0(tt., X) → ACTIVATE.0(X)
ISNAT.0(n__s.0(n__length.1(x0))) → ISNAT.0(length.1(activate.1(x0)))
ACTIVATE.0(n__and.0-0(n__and.0-0(x0, x1), y1)) → AND.0-0(and.0-0(activate.0(x0), x1), y1)
ACTIVATE.1(n__and.0-1(n__and.1-0(x0, x1), y1)) → AND.0-1(and.1-0(activate.1(x0), x1), y1)
ACTIVATE.1(n__and.1-1(x0, y1)) → AND.1-1(x0, y1)
ACTIVATE.1(n__and.0-1(x0, y1)) → AND.0-1(x0, y1)
ISNATLIST.0(n__cons.1-1(n__and.1-1(x0, x1), y1)) → AND.1-1(isNat.1(and.1-1(activate.1(x0), x1)), n__isNatList.1(activate.1(y1)))
ACTIVATE.1(n__and.0-1(n__and.0-0(x0, x1), y1)) → AND.0-1(and.0-0(activate.0(x0), x1), y1)
ISNAT.0(n__s.1(n__and.1-1(x0, x1))) → ISNAT.1(and.1-1(activate.1(x0), x1))
ISNATILIST.0(n__cons.0-0(n__and.0-0(x0, x1), y1)) → AND.1-1(isNat.0(and.0-0(activate.0(x0), x1)), n__isNatIList.0(activate.0(y1)))
The TRS R consists of the following rules:
activate.0(n__and.1-0(X1, X2)) → and.1-0(activate.1(X1), X2)
take.0-0(s.0(M), cons.1-0(N, IL)) → U31.1-0-0-1(and.1-1(isNatIList.0(activate.0(IL)), n__and.1-1(n__isNat.0(M), n__isNat.1(N))), activate.0(IL), M, N)
U31.1-0-1-1(tt., IL, M, N) → cons.1-0(activate.1(N), n__take.1-0(activate.1(M), activate.0(IL)))
and.1-0(tt., X) → activate.0(X)
activate.0(n__zeros.) → zeros.
and.0-0(X1, X2) → n__and.0-0(X1, X2)
activate.0(n__s.0(X)) → s.0(activate.0(X))
activate.0(n__take.0-1(X1, X2)) → take.0-1(activate.0(X1), activate.1(X2))
U21.1(tt.) → nil.
activate.1(n__isNat.1(X)) → isNat.1(X)
length.0(X) → n__length.0(X)
isNatList.0(n__take.0-0(V1, V2)) → and.1-1(isNat.0(activate.0(V1)), n__isNatIList.0(activate.0(V2)))
isNat.0(n__s.0(V1)) → isNat.0(activate.0(V1))
cons.1-0(X1, X2) → n__cons.1-0(X1, X2)
and.1-1(X1, X2) → n__and.1-1(X1, X2)
activate.0(n__s.1(X)) → s.1(activate.1(X))
isNat.0(X) → n__isNat.0(X)
activate.0(n__take.1-1(X1, X2)) → take.1-1(activate.1(X1), activate.1(X2))
activate.0(n__and.0-0(X1, X2)) → and.0-0(activate.0(X1), X2)
isNatList.0(n__cons.1-0(V1, V2)) → and.1-1(isNat.1(activate.1(V1)), n__isNatList.0(activate.0(V2)))
isNatIList.0(X) → n__isNatIList.0(X)
length.0(cons.0-1(N, L)) → U11.1-1(and.1-1(isNatList.1(activate.1(L)), n__isNat.0(N)), activate.1(L))
U31.1-1-0-0(tt., IL, M, N) → cons.0-0(activate.0(N), n__take.0-1(activate.0(M), activate.1(IL)))
cons.0-0(X1, X2) → n__cons.0-0(X1, X2)
s.0(X) → n__s.0(X)
U31.1-1-1-0(tt., IL, M, N) → cons.0-0(activate.0(N), n__take.1-1(activate.1(M), activate.1(IL)))
cons.0-1(X1, X2) → n__cons.0-1(X1, X2)
activate.1(n__isNatList.0(X)) → isNatList.0(X)
activate.0(n__cons.0-1(X1, X2)) → cons.0-1(activate.0(X1), X2)
and.0-1(X1, X2) → n__and.0-1(X1, X2)
isNat.0(n__length.1(V1)) → isNatList.1(activate.1(V1))
activate.1(n__isNatIList.1(X)) → isNatIList.1(X)
isNatIList.0(n__cons.1-1(V1, V2)) → and.1-1(isNat.1(activate.1(V1)), n__isNatIList.1(activate.1(V2)))
length.0(cons.1-1(N, L)) → U11.1-1(and.1-1(isNatList.1(activate.1(L)), n__isNat.1(N)), activate.1(L))
isNatIList.1(X) → n__isNatIList.1(X)
take.0-0(X1, X2) → n__take.0-0(X1, X2)
zeros. → n__zeros.
activate.0(n__take.1-0(X1, X2)) → take.1-0(activate.1(X1), activate.0(X2))
length.0(nil.) → 0.
isNat.1(X) → n__isNat.1(X)
activate.1(n__and.1-1(X1, X2)) → and.1-1(activate.1(X1), X2)
activate.0(n__cons.0-0(X1, X2)) → cons.0-0(activate.0(X1), X2)
isNatList.0(n__take.1-0(V1, V2)) → and.1-1(isNat.1(activate.1(V1)), n__isNatIList.0(activate.0(V2)))
take.1-1(X1, X2) → n__take.1-1(X1, X2)
activate.0(n__length.1(X)) → length.1(activate.1(X))
U31.1-0-0-0(tt., IL, M, N) → cons.0-0(activate.0(N), n__take.0-0(activate.0(M), activate.0(IL)))
isNat.0(n__length.0(V1)) → isNatList.0(activate.0(V1))
isNatIList.0(n__cons.1-0(V1, V2)) → and.1-1(isNat.1(activate.1(V1)), n__isNatIList.0(activate.0(V2)))
s.1(X) → n__s.1(X)
isNatList.0(n__cons.0-1(V1, V2)) → and.1-1(isNat.0(activate.0(V1)), n__isNatList.1(activate.1(V2)))
take.1-0(X1, X2) → n__take.1-0(X1, X2)
isNatIList.0(V) → isNatList.0(activate.0(V))
take.0-0(0., IL) → U21.1(isNatIList.0(IL))
activate.1(n__isNatIList.0(X)) → isNatIList.0(X)
isNatList.0(n__cons.0-0(V1, V2)) → and.1-1(isNat.0(activate.0(V1)), n__isNatList.0(activate.0(V2)))
isNatList.0(n__cons.1-1(V1, V2)) → and.1-1(isNat.1(activate.1(V1)), n__isNatList.1(activate.1(V2)))
activate.0(n__cons.1-1(X1, X2)) → cons.1-1(activate.1(X1), X2)
isNatList.0(n__take.1-1(V1, V2)) → and.1-1(isNat.1(activate.1(V1)), n__isNatIList.1(activate.1(V2)))
U31.1-1-0-1(tt., IL, M, N) → cons.1-0(activate.1(N), n__take.0-1(activate.0(M), activate.1(IL)))
isNatList.1(X) → n__isNatList.1(X)
U31.1-1-1-1(tt., IL, M, N) → cons.1-0(activate.1(N), n__take.1-1(activate.1(M), activate.1(IL)))
length.1(X) → n__length.1(X)
cons.1-1(X1, X2) → n__cons.1-1(X1, X2)
take.0-1(X1, X2) → n__take.0-1(X1, X2)
and.1-0(X1, X2) → n__and.1-0(X1, X2)
activate.0(X) → X
activate.0(n__nil.) → nil.
and.1-1(tt., X) → activate.1(X)
isNatIList.1(V) → isNatList.1(activate.1(V))
take.0-1(0., IL) → U21.1(isNatIList.1(IL))
activate.1(X) → X
0. → n__0.
U31.1-0-1-0(tt., IL, M, N) → cons.0-0(activate.0(N), n__take.1-0(activate.1(M), activate.0(IL)))
take.0-0(s.1(M), cons.1-1(N, IL)) → U31.1-1-1-1(and.1-1(isNatIList.1(activate.1(IL)), n__and.1-1(n__isNat.1(M), n__isNat.1(N))), activate.1(IL), M, N)
isNat.0(n__s.1(V1)) → isNat.1(activate.1(V1))
U31.1-0-0-1(tt., IL, M, N) → cons.1-0(activate.1(N), n__take.0-0(activate.0(M), activate.0(IL)))
U11.1-0(tt., L) → s.0(length.0(activate.0(L)))
isNatList.0(n__nil.) → tt.
take.0-0(s.0(M), cons.0-1(N, IL)) → U31.1-1-0-0(and.1-1(isNatIList.1(activate.1(IL)), n__and.1-1(n__isNat.0(M), n__isNat.0(N))), activate.1(IL), M, N)
isNatList.0(n__take.0-1(V1, V2)) → and.1-1(isNat.0(activate.0(V1)), n__isNatIList.1(activate.1(V2)))
activate.0(n__cons.1-0(X1, X2)) → cons.1-0(activate.1(X1), X2)
take.0-0(s.1(M), cons.0-1(N, IL)) → U31.1-1-1-0(and.1-1(isNatIList.1(activate.1(IL)), n__and.1-1(n__isNat.1(M), n__isNat.0(N))), activate.1(IL), M, N)
isNatIList.0(n__zeros.) → tt.
take.0-0(s.0(M), cons.0-0(N, IL)) → U31.1-0-0-0(and.1-1(isNatIList.0(activate.0(IL)), n__and.1-1(n__isNat.0(M), n__isNat.0(N))), activate.0(IL), M, N)
length.0(cons.1-0(N, L)) → U11.1-0(and.1-1(isNatList.0(activate.0(L)), n__isNat.1(N)), activate.0(L))
activate.0(n__length.0(X)) → length.0(activate.0(X))
activate.1(n__and.0-1(X1, X2)) → and.0-1(activate.0(X1), X2)
zeros. → cons.0-0(0., n__zeros.)
isNatIList.0(n__cons.0-0(V1, V2)) → and.1-1(isNat.0(activate.0(V1)), n__isNatIList.0(activate.0(V2)))
take.0-0(s.0(M), cons.1-1(N, IL)) → U31.1-1-0-1(and.1-1(isNatIList.1(activate.1(IL)), n__and.1-1(n__isNat.0(M), n__isNat.1(N))), activate.1(IL), M, N)
take.0-0(s.1(M), cons.0-0(N, IL)) → U31.1-0-1-0(and.1-1(isNatIList.0(activate.0(IL)), n__and.1-1(n__isNat.1(M), n__isNat.0(N))), activate.0(IL), M, N)
activate.0(n__0.) → 0.
activate.1(n__isNatList.1(X)) → isNatList.1(X)
take.0-0(s.1(M), cons.1-0(N, IL)) → U31.1-0-1-1(and.1-1(isNatIList.0(activate.0(IL)), n__and.1-1(n__isNat.1(M), n__isNat.1(N))), activate.0(IL), M, N)
activate.0(n__take.0-0(X1, X2)) → take.0-0(activate.0(X1), activate.0(X2))
isNat.0(n__0.) → tt.
nil. → n__nil.
U11.1-1(tt., L) → s.0(length.1(activate.1(L)))
length.0(cons.0-0(N, L)) → U11.1-0(and.1-1(isNatList.0(activate.0(L)), n__isNat.0(N)), activate.0(L))
activate.1(n__isNat.0(X)) → isNat.0(X)
isNatList.0(X) → n__isNatList.0(X)
isNatIList.0(n__cons.0-1(V1, V2)) → and.1-1(isNat.0(activate.0(V1)), n__isNatIList.1(activate.1(V2)))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ SemLabProof
↳ QDP
↳ DependencyGraphProof
↳ SemLabProof2
↳ QDPOrderProof
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
ISNAT.0(n__s.0(n__and.0-0(x0, x1))) → ISNAT.0(and.0-0(activate.0(x0), x1))
ACTIVATE.0(n__and.1-0(X1, X2)) → ACTIVATE.1(X1)
ISNATILIST.0(n__cons.0-1(x0, y1)) → AND.1-1(isNat.0(x0), n__isNatIList.1(activate.1(y1)))
ISNAT.0(n__s.0(V1)) → ACTIVATE.0(V1)
ISNAT.0(n__s.1(x0)) → ISNAT.1(x0)
ISNATILIST.0(n__cons.1-1(n__and.1-1(x0, x1), y1)) → AND.1-1(isNat.1(and.1-1(activate.1(x0), x1)), n__isNatIList.1(activate.1(y1)))
ISNATILIST.0(n__cons.1-1(n__and.0-1(x0, x1), y1)) → AND.1-1(isNat.1(and.0-1(activate.0(x0), x1)), n__isNatIList.1(activate.1(y1)))
ACTIVATE.1(n__isNat.0(X)) → ISNAT.0(X)
ACTIVATE.1(n__isNat.1(X)) → ISNAT.1(X)
ISNATILIST.0(n__cons.1-0(x0, y1)) → AND.1-1(isNat.1(x0), n__isNatIList.0(activate.0(y1)))
ISNATLIST.0(n__cons.0-1(x0, y1)) → AND.1-1(isNat.0(x0), n__isNatList.1(activate.1(y1)))
ISNATILIST.0(n__cons.1-0(n__and.0-1(x0, x1), y1)) → AND.1-1(isNat.1(and.0-1(activate.0(x0), x1)), n__isNatIList.0(activate.0(y1)))
ISNAT.0(n__s.1(V1)) → ACTIVATE.1(V1)
ISNAT.0(n__s.1(n__and.0-1(x0, x1))) → ISNAT.1(and.0-1(activate.0(x0), x1))
ISNAT.0(n__s.0(n__s.1(x0))) → ISNAT.0(s.1(activate.1(x0)))
ISNATLIST.0(n__cons.0-1(n__and.1-0(x0, x1), y1)) → AND.1-1(isNat.0(and.1-0(activate.1(x0), x1)), n__isNatList.1(activate.1(y1)))
ISNATLIST.0(n__cons.0-0(n__and.1-0(x0, x1), y1)) → AND.1-1(isNat.0(and.1-0(activate.1(x0), x1)), n__isNatList.0(activate.0(y1)))
ACTIVATE.0(n__s.1(X)) → ACTIVATE.1(X)
ISNATLIST.0(n__cons.1-1(n__and.0-1(x0, x1), y1)) → AND.1-1(isNat.1(and.0-1(activate.0(x0), x1)), n__isNatList.1(activate.1(y1)))
ISNATILIST.0(n__cons.0-1(n__and.0-0(x0, x1), y1)) → AND.1-1(isNat.0(and.0-0(activate.0(x0), x1)), n__isNatIList.1(activate.1(y1)))
ISNAT.0(n__s.0(n__and.1-0(x0, x1))) → ISNAT.0(and.1-0(activate.1(x0), x1))
ACTIVATE.0(n__and.1-0(n__isNat.0(x0), y1)) → AND.1-0(isNat.0(x0), y1)
ISNATLIST.0(n__cons.0-0(n__0., y1)) → AND.1-1(isNat.0(0.), n__isNatList.0(activate.0(y1)))
ACTIVATE.0(n__and.0-0(n__and.1-0(x0, x1), y1)) → AND.0-0(and.1-0(activate.1(x0), x1), y1)
ISNATILIST.0(n__cons.0-0(n__0., y1)) → AND.1-1(isNat.0(0.), n__isNatIList.0(activate.0(y1)))
ACTIVATE.1(n__isNatIList.1(X)) → ISNATILIST.1(X)
ACTIVATE.1(n__isNatList.0(X)) → ISNATLIST.0(X)
ACTIVATE.1(n__and.1-1(n__isNat.1(x0), y1)) → AND.1-1(isNat.1(x0), y1)
ACTIVATE.0(n__and.0-0(x0, y1)) → AND.0-0(x0, y1)
ISNAT.0(n__s.0(n__s.0(x0))) → ISNAT.0(s.0(activate.0(x0)))
ISNATLIST.0(n__cons.1-0(n__and.1-1(x0, x1), y1)) → AND.1-1(isNat.1(and.1-1(activate.1(x0), x1)), n__isNatList.0(activate.0(y1)))
ACTIVATE.1(n__and.1-1(X1, X2)) → ACTIVATE.1(X1)
ACTIVATE.0(n__and.1-0(n__and.1-1(x0, x1), y1)) → AND.1-0(and.1-1(activate.1(x0), x1), y1)
ISNATLIST.0(n__cons.0-0(x0, y1)) → AND.1-1(isNat.0(x0), n__isNatList.0(activate.0(y1)))
ACTIVATE.1(n__and.1-1(n__and.1-1(x0, x1), y1)) → AND.1-1(and.1-1(activate.1(x0), x1), y1)
ISNATLIST.0(n__cons.0-0(n__and.0-0(x0, x1), y1)) → AND.1-1(isNat.0(and.0-0(activate.0(x0), x1)), n__isNatList.0(activate.0(y1)))
ISNATLIST.0(n__cons.1-1(x0, y1)) → AND.1-1(isNat.1(x0), n__isNatList.1(activate.1(y1)))
ISNATILIST.0(n__cons.0-0(x0, y1)) → AND.1-1(isNat.0(x0), n__isNatIList.0(activate.0(y1)))
ACTIVATE.0(n__and.1-0(x0, y1)) → AND.1-0(x0, y1)
ACTIVATE.1(n__isNatList.1(X)) → ISNATLIST.1(X)
ACTIVATE.0(n__and.0-0(X1, X2)) → ACTIVATE.0(X1)
ISNATILIST.0(n__cons.0-1(n__and.1-0(x0, x1), y1)) → AND.1-1(isNat.0(and.1-0(activate.1(x0), x1)), n__isNatIList.1(activate.1(y1)))
AND.1-1(tt., X) → ACTIVATE.1(X)
ACTIVATE.0(n__and.1-0(n__and.0-1(x0, x1), y1)) → AND.1-0(and.0-1(activate.0(x0), x1), y1)
ISNATILIST.0(n__cons.1-0(n__and.1-1(x0, x1), y1)) → AND.1-1(isNat.1(and.1-1(activate.1(x0), x1)), n__isNatIList.0(activate.0(y1)))
ACTIVATE.1(n__and.1-1(n__and.0-1(x0, x1), y1)) → AND.1-1(and.0-1(activate.0(x0), x1), y1)
ISNATILIST.0(n__cons.1-1(x0, y1)) → AND.1-1(isNat.1(x0), n__isNatIList.1(activate.1(y1)))
ISNAT.0(n__s.0(x0)) → ISNAT.0(x0)
ISNATILIST.0(n__cons.0-1(n__0., y1)) → AND.1-1(isNat.0(0.), n__isNatIList.1(activate.1(y1)))
ACTIVATE.1(n__isNatIList.0(X)) → ISNATILIST.0(X)
ISNATLIST.0(n__cons.0-1(n__and.0-0(x0, x1), y1)) → AND.1-1(isNat.0(and.0-0(activate.0(x0), x1)), n__isNatList.1(activate.1(y1)))
ISNATLIST.0(n__cons.1-0(x0, y1)) → AND.1-1(isNat.1(x0), n__isNatList.0(activate.0(y1)))
ISNAT.0(n__s.0(n__length.0(x0))) → ISNAT.0(length.0(activate.0(x0)))
ISNATLIST.0(n__cons.0-1(n__0., y1)) → AND.1-1(isNat.0(0.), n__isNatList.1(activate.1(y1)))
ACTIVATE.1(n__and.1-1(n__isNat.0(x0), y1)) → AND.1-1(isNat.0(x0), y1)
ACTIVATE.1(n__and.0-1(X1, X2)) → ACTIVATE.0(X1)
ISNATILIST.0(n__cons.0-0(n__and.1-0(x0, x1), y1)) → AND.1-1(isNat.0(and.1-0(activate.1(x0), x1)), n__isNatIList.0(activate.0(y1)))
ACTIVATE.0(n__and.1-0(n__isNat.1(x0), y1)) → AND.1-0(isNat.1(x0), y1)
ACTIVATE.0(n__s.0(X)) → ACTIVATE.0(X)
ISNATLIST.0(n__cons.1-0(n__and.0-1(x0, x1), y1)) → AND.1-1(isNat.1(and.0-1(activate.0(x0), x1)), n__isNatList.0(activate.0(y1)))
AND.1-0(tt., X) → ACTIVATE.0(X)
ISNAT.0(n__s.0(n__length.1(x0))) → ISNAT.0(length.1(activate.1(x0)))
ACTIVATE.0(n__and.0-0(n__and.0-0(x0, x1), y1)) → AND.0-0(and.0-0(activate.0(x0), x1), y1)
ACTIVATE.1(n__and.0-1(n__and.1-0(x0, x1), y1)) → AND.0-1(and.1-0(activate.1(x0), x1), y1)
ACTIVATE.1(n__and.1-1(x0, y1)) → AND.1-1(x0, y1)
ACTIVATE.1(n__and.0-1(x0, y1)) → AND.0-1(x0, y1)
ISNATLIST.0(n__cons.1-1(n__and.1-1(x0, x1), y1)) → AND.1-1(isNat.1(and.1-1(activate.1(x0), x1)), n__isNatList.1(activate.1(y1)))
ACTIVATE.1(n__and.0-1(n__and.0-0(x0, x1), y1)) → AND.0-1(and.0-0(activate.0(x0), x1), y1)
ISNAT.0(n__s.1(n__and.1-1(x0, x1))) → ISNAT.1(and.1-1(activate.1(x0), x1))
ISNATILIST.0(n__cons.0-0(n__and.0-0(x0, x1), y1)) → AND.1-1(isNat.0(and.0-0(activate.0(x0), x1)), n__isNatIList.0(activate.0(y1)))
The TRS R consists of the following rules:
activate.0(n__and.1-0(X1, X2)) → and.1-0(activate.1(X1), X2)
take.0-0(s.0(M), cons.1-0(N, IL)) → U31.1-0-0-1(and.1-1(isNatIList.0(activate.0(IL)), n__and.1-1(n__isNat.0(M), n__isNat.1(N))), activate.0(IL), M, N)
U31.1-0-1-1(tt., IL, M, N) → cons.1-0(activate.1(N), n__take.1-0(activate.1(M), activate.0(IL)))
and.1-0(tt., X) → activate.0(X)
activate.0(n__zeros.) → zeros.
and.0-0(X1, X2) → n__and.0-0(X1, X2)
activate.0(n__s.0(X)) → s.0(activate.0(X))
activate.0(n__take.0-1(X1, X2)) → take.0-1(activate.0(X1), activate.1(X2))
U21.1(tt.) → nil.
activate.1(n__isNat.1(X)) → isNat.1(X)
length.0(X) → n__length.0(X)
isNatList.0(n__take.0-0(V1, V2)) → and.1-1(isNat.0(activate.0(V1)), n__isNatIList.0(activate.0(V2)))
isNat.0(n__s.0(V1)) → isNat.0(activate.0(V1))
cons.1-0(X1, X2) → n__cons.1-0(X1, X2)
and.1-1(X1, X2) → n__and.1-1(X1, X2)
activate.0(n__s.1(X)) → s.1(activate.1(X))
isNat.0(X) → n__isNat.0(X)
activate.0(n__take.1-1(X1, X2)) → take.1-1(activate.1(X1), activate.1(X2))
activate.0(n__and.0-0(X1, X2)) → and.0-0(activate.0(X1), X2)
isNatList.0(n__cons.1-0(V1, V2)) → and.1-1(isNat.1(activate.1(V1)), n__isNatList.0(activate.0(V2)))
isNatIList.0(X) → n__isNatIList.0(X)
length.0(cons.0-1(N, L)) → U11.1-1(and.1-1(isNatList.1(activate.1(L)), n__isNat.0(N)), activate.1(L))
U31.1-1-0-0(tt., IL, M, N) → cons.0-0(activate.0(N), n__take.0-1(activate.0(M), activate.1(IL)))
cons.0-0(X1, X2) → n__cons.0-0(X1, X2)
s.0(X) → n__s.0(X)
U31.1-1-1-0(tt., IL, M, N) → cons.0-0(activate.0(N), n__take.1-1(activate.1(M), activate.1(IL)))
cons.0-1(X1, X2) → n__cons.0-1(X1, X2)
activate.1(n__isNatList.0(X)) → isNatList.0(X)
activate.0(n__cons.0-1(X1, X2)) → cons.0-1(activate.0(X1), X2)
and.0-1(X1, X2) → n__and.0-1(X1, X2)
isNat.0(n__length.1(V1)) → isNatList.1(activate.1(V1))
activate.1(n__isNatIList.1(X)) → isNatIList.1(X)
isNatIList.0(n__cons.1-1(V1, V2)) → and.1-1(isNat.1(activate.1(V1)), n__isNatIList.1(activate.1(V2)))
length.0(cons.1-1(N, L)) → U11.1-1(and.1-1(isNatList.1(activate.1(L)), n__isNat.1(N)), activate.1(L))
isNatIList.1(X) → n__isNatIList.1(X)
take.0-0(X1, X2) → n__take.0-0(X1, X2)
zeros. → n__zeros.
activate.0(n__take.1-0(X1, X2)) → take.1-0(activate.1(X1), activate.0(X2))
length.0(nil.) → 0.
isNat.1(X) → n__isNat.1(X)
activate.1(n__and.1-1(X1, X2)) → and.1-1(activate.1(X1), X2)
activate.0(n__cons.0-0(X1, X2)) → cons.0-0(activate.0(X1), X2)
isNatList.0(n__take.1-0(V1, V2)) → and.1-1(isNat.1(activate.1(V1)), n__isNatIList.0(activate.0(V2)))
take.1-1(X1, X2) → n__take.1-1(X1, X2)
activate.0(n__length.1(X)) → length.1(activate.1(X))
U31.1-0-0-0(tt., IL, M, N) → cons.0-0(activate.0(N), n__take.0-0(activate.0(M), activate.0(IL)))
isNat.0(n__length.0(V1)) → isNatList.0(activate.0(V1))
isNatIList.0(n__cons.1-0(V1, V2)) → and.1-1(isNat.1(activate.1(V1)), n__isNatIList.0(activate.0(V2)))
s.1(X) → n__s.1(X)
isNatList.0(n__cons.0-1(V1, V2)) → and.1-1(isNat.0(activate.0(V1)), n__isNatList.1(activate.1(V2)))
take.1-0(X1, X2) → n__take.1-0(X1, X2)
isNatIList.0(V) → isNatList.0(activate.0(V))
take.0-0(0., IL) → U21.1(isNatIList.0(IL))
activate.1(n__isNatIList.0(X)) → isNatIList.0(X)
isNatList.0(n__cons.0-0(V1, V2)) → and.1-1(isNat.0(activate.0(V1)), n__isNatList.0(activate.0(V2)))
isNatList.0(n__cons.1-1(V1, V2)) → and.1-1(isNat.1(activate.1(V1)), n__isNatList.1(activate.1(V2)))
activate.0(n__cons.1-1(X1, X2)) → cons.1-1(activate.1(X1), X2)
isNatList.0(n__take.1-1(V1, V2)) → and.1-1(isNat.1(activate.1(V1)), n__isNatIList.1(activate.1(V2)))
U31.1-1-0-1(tt., IL, M, N) → cons.1-0(activate.1(N), n__take.0-1(activate.0(M), activate.1(IL)))
isNatList.1(X) → n__isNatList.1(X)
U31.1-1-1-1(tt., IL, M, N) → cons.1-0(activate.1(N), n__take.1-1(activate.1(M), activate.1(IL)))
length.1(X) → n__length.1(X)
cons.1-1(X1, X2) → n__cons.1-1(X1, X2)
take.0-1(X1, X2) → n__take.0-1(X1, X2)
and.1-0(X1, X2) → n__and.1-0(X1, X2)
activate.0(X) → X
activate.0(n__nil.) → nil.
and.1-1(tt., X) → activate.1(X)
isNatIList.1(V) → isNatList.1(activate.1(V))
take.0-1(0., IL) → U21.1(isNatIList.1(IL))
activate.1(X) → X
0. → n__0.
U31.1-0-1-0(tt., IL, M, N) → cons.0-0(activate.0(N), n__take.1-0(activate.1(M), activate.0(IL)))
take.0-0(s.1(M), cons.1-1(N, IL)) → U31.1-1-1-1(and.1-1(isNatIList.1(activate.1(IL)), n__and.1-1(n__isNat.1(M), n__isNat.1(N))), activate.1(IL), M, N)
isNat.0(n__s.1(V1)) → isNat.1(activate.1(V1))
U31.1-0-0-1(tt., IL, M, N) → cons.1-0(activate.1(N), n__take.0-0(activate.0(M), activate.0(IL)))
U11.1-0(tt., L) → s.0(length.0(activate.0(L)))
isNatList.0(n__nil.) → tt.
take.0-0(s.0(M), cons.0-1(N, IL)) → U31.1-1-0-0(and.1-1(isNatIList.1(activate.1(IL)), n__and.1-1(n__isNat.0(M), n__isNat.0(N))), activate.1(IL), M, N)
isNatList.0(n__take.0-1(V1, V2)) → and.1-1(isNat.0(activate.0(V1)), n__isNatIList.1(activate.1(V2)))
activate.0(n__cons.1-0(X1, X2)) → cons.1-0(activate.1(X1), X2)
take.0-0(s.1(M), cons.0-1(N, IL)) → U31.1-1-1-0(and.1-1(isNatIList.1(activate.1(IL)), n__and.1-1(n__isNat.1(M), n__isNat.0(N))), activate.1(IL), M, N)
isNatIList.0(n__zeros.) → tt.
take.0-0(s.0(M), cons.0-0(N, IL)) → U31.1-0-0-0(and.1-1(isNatIList.0(activate.0(IL)), n__and.1-1(n__isNat.0(M), n__isNat.0(N))), activate.0(IL), M, N)
length.0(cons.1-0(N, L)) → U11.1-0(and.1-1(isNatList.0(activate.0(L)), n__isNat.1(N)), activate.0(L))
activate.0(n__length.0(X)) → length.0(activate.0(X))
activate.1(n__and.0-1(X1, X2)) → and.0-1(activate.0(X1), X2)
zeros. → cons.0-0(0., n__zeros.)
isNatIList.0(n__cons.0-0(V1, V2)) → and.1-1(isNat.0(activate.0(V1)), n__isNatIList.0(activate.0(V2)))
take.0-0(s.0(M), cons.1-1(N, IL)) → U31.1-1-0-1(and.1-1(isNatIList.1(activate.1(IL)), n__and.1-1(n__isNat.0(M), n__isNat.1(N))), activate.1(IL), M, N)
take.0-0(s.1(M), cons.0-0(N, IL)) → U31.1-0-1-0(and.1-1(isNatIList.0(activate.0(IL)), n__and.1-1(n__isNat.1(M), n__isNat.0(N))), activate.0(IL), M, N)
activate.0(n__0.) → 0.
activate.1(n__isNatList.1(X)) → isNatList.1(X)
take.0-0(s.1(M), cons.1-0(N, IL)) → U31.1-0-1-1(and.1-1(isNatIList.0(activate.0(IL)), n__and.1-1(n__isNat.1(M), n__isNat.1(N))), activate.0(IL), M, N)
activate.0(n__take.0-0(X1, X2)) → take.0-0(activate.0(X1), activate.0(X2))
isNat.0(n__0.) → tt.
nil. → n__nil.
U11.1-1(tt., L) → s.0(length.1(activate.1(L)))
length.0(cons.0-0(N, L)) → U11.1-0(and.1-1(isNatList.0(activate.0(L)), n__isNat.0(N)), activate.0(L))
activate.1(n__isNat.0(X)) → isNat.0(X)
isNatList.0(X) → n__isNatList.0(X)
isNatIList.0(n__cons.0-1(V1, V2)) → and.1-1(isNat.0(activate.0(V1)), n__isNatIList.1(activate.1(V2)))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 1 SCC with 12 less nodes.
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ SemLabProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ SemLabProof2
↳ QDPOrderProof
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
ACTIVATE.0(n__and.1-0(X1, X2)) → ACTIVATE.1(X1)
ISNAT.0(n__s.0(n__and.0-0(x0, x1))) → ISNAT.0(and.0-0(activate.0(x0), x1))
ISNAT.0(n__s.0(V1)) → ACTIVATE.0(V1)
ISNATILIST.0(n__cons.0-1(x0, y1)) → AND.1-1(isNat.0(x0), n__isNatIList.1(activate.1(y1)))
ISNATILIST.0(n__cons.1-1(n__and.1-1(x0, x1), y1)) → AND.1-1(isNat.1(and.1-1(activate.1(x0), x1)), n__isNatIList.1(activate.1(y1)))
ISNATILIST.0(n__cons.1-1(n__and.0-1(x0, x1), y1)) → AND.1-1(isNat.1(and.0-1(activate.0(x0), x1)), n__isNatIList.1(activate.1(y1)))
ACTIVATE.1(n__isNat.0(X)) → ISNAT.0(X)
ISNATILIST.0(n__cons.1-0(x0, y1)) → AND.1-1(isNat.1(x0), n__isNatIList.0(activate.0(y1)))
ISNATLIST.0(n__cons.0-1(x0, y1)) → AND.1-1(isNat.0(x0), n__isNatList.1(activate.1(y1)))
ISNATILIST.0(n__cons.1-0(n__and.0-1(x0, x1), y1)) → AND.1-1(isNat.1(and.0-1(activate.0(x0), x1)), n__isNatIList.0(activate.0(y1)))
ISNAT.0(n__s.1(V1)) → ACTIVATE.1(V1)
ISNAT.0(n__s.0(n__s.1(x0))) → ISNAT.0(s.1(activate.1(x0)))
ISNATLIST.0(n__cons.0-1(n__and.1-0(x0, x1), y1)) → AND.1-1(isNat.0(and.1-0(activate.1(x0), x1)), n__isNatList.1(activate.1(y1)))
ISNATLIST.0(n__cons.0-0(n__and.1-0(x0, x1), y1)) → AND.1-1(isNat.0(and.1-0(activate.1(x0), x1)), n__isNatList.0(activate.0(y1)))
ACTIVATE.0(n__s.1(X)) → ACTIVATE.1(X)
ISNATLIST.0(n__cons.1-1(n__and.0-1(x0, x1), y1)) → AND.1-1(isNat.1(and.0-1(activate.0(x0), x1)), n__isNatList.1(activate.1(y1)))
ISNATILIST.0(n__cons.0-1(n__and.0-0(x0, x1), y1)) → AND.1-1(isNat.0(and.0-0(activate.0(x0), x1)), n__isNatIList.1(activate.1(y1)))
ACTIVATE.0(n__and.1-0(n__isNat.0(x0), y1)) → AND.1-0(isNat.0(x0), y1)
ISNAT.0(n__s.0(n__and.1-0(x0, x1))) → ISNAT.0(and.1-0(activate.1(x0), x1))
ISNATLIST.0(n__cons.0-0(n__0., y1)) → AND.1-1(isNat.0(0.), n__isNatList.0(activate.0(y1)))
ISNATILIST.0(n__cons.0-0(n__0., y1)) → AND.1-1(isNat.0(0.), n__isNatIList.0(activate.0(y1)))
ACTIVATE.1(n__isNatList.0(X)) → ISNATLIST.0(X)
ACTIVATE.1(n__and.1-1(n__isNat.1(x0), y1)) → AND.1-1(isNat.1(x0), y1)
ISNAT.0(n__s.0(n__s.0(x0))) → ISNAT.0(s.0(activate.0(x0)))
ISNATLIST.0(n__cons.1-0(n__and.1-1(x0, x1), y1)) → AND.1-1(isNat.1(and.1-1(activate.1(x0), x1)), n__isNatList.0(activate.0(y1)))
ACTIVATE.1(n__and.1-1(X1, X2)) → ACTIVATE.1(X1)
ISNATLIST.0(n__cons.0-0(x0, y1)) → AND.1-1(isNat.0(x0), n__isNatList.0(activate.0(y1)))
ACTIVATE.0(n__and.1-0(n__and.1-1(x0, x1), y1)) → AND.1-0(and.1-1(activate.1(x0), x1), y1)
ISNATLIST.0(n__cons.0-0(n__and.0-0(x0, x1), y1)) → AND.1-1(isNat.0(and.0-0(activate.0(x0), x1)), n__isNatList.0(activate.0(y1)))
ACTIVATE.1(n__and.1-1(n__and.1-1(x0, x1), y1)) → AND.1-1(and.1-1(activate.1(x0), x1), y1)
ISNATLIST.0(n__cons.1-1(x0, y1)) → AND.1-1(isNat.1(x0), n__isNatList.1(activate.1(y1)))
ISNATILIST.0(n__cons.0-0(x0, y1)) → AND.1-1(isNat.0(x0), n__isNatIList.0(activate.0(y1)))
ACTIVATE.0(n__and.1-0(x0, y1)) → AND.1-0(x0, y1)
ACTIVATE.0(n__and.0-0(X1, X2)) → ACTIVATE.0(X1)
ISNATILIST.0(n__cons.0-1(n__and.1-0(x0, x1), y1)) → AND.1-1(isNat.0(and.1-0(activate.1(x0), x1)), n__isNatIList.1(activate.1(y1)))
AND.1-1(tt., X) → ACTIVATE.1(X)
ACTIVATE.0(n__and.1-0(n__and.0-1(x0, x1), y1)) → AND.1-0(and.0-1(activate.0(x0), x1), y1)
ISNATILIST.0(n__cons.1-0(n__and.1-1(x0, x1), y1)) → AND.1-1(isNat.1(and.1-1(activate.1(x0), x1)), n__isNatIList.0(activate.0(y1)))
ACTIVATE.1(n__and.1-1(n__and.0-1(x0, x1), y1)) → AND.1-1(and.0-1(activate.0(x0), x1), y1)
ISNATILIST.0(n__cons.1-1(x0, y1)) → AND.1-1(isNat.1(x0), n__isNatIList.1(activate.1(y1)))
ISNAT.0(n__s.0(x0)) → ISNAT.0(x0)
ISNATILIST.0(n__cons.0-1(n__0., y1)) → AND.1-1(isNat.0(0.), n__isNatIList.1(activate.1(y1)))
ACTIVATE.1(n__isNatIList.0(X)) → ISNATILIST.0(X)
ISNATLIST.0(n__cons.0-1(n__and.0-0(x0, x1), y1)) → AND.1-1(isNat.0(and.0-0(activate.0(x0), x1)), n__isNatList.1(activate.1(y1)))
ISNATLIST.0(n__cons.1-0(x0, y1)) → AND.1-1(isNat.1(x0), n__isNatList.0(activate.0(y1)))
ISNATLIST.0(n__cons.0-1(n__0., y1)) → AND.1-1(isNat.0(0.), n__isNatList.1(activate.1(y1)))
ACTIVATE.1(n__and.1-1(n__isNat.0(x0), y1)) → AND.1-1(isNat.0(x0), y1)
ISNAT.0(n__s.0(n__length.0(x0))) → ISNAT.0(length.0(activate.0(x0)))
ACTIVATE.1(n__and.0-1(X1, X2)) → ACTIVATE.0(X1)
ISNATILIST.0(n__cons.0-0(n__and.1-0(x0, x1), y1)) → AND.1-1(isNat.0(and.1-0(activate.1(x0), x1)), n__isNatIList.0(activate.0(y1)))
ACTIVATE.0(n__and.1-0(n__isNat.1(x0), y1)) → AND.1-0(isNat.1(x0), y1)
ACTIVATE.0(n__s.0(X)) → ACTIVATE.0(X)
ISNATLIST.0(n__cons.1-0(n__and.0-1(x0, x1), y1)) → AND.1-1(isNat.1(and.0-1(activate.0(x0), x1)), n__isNatList.0(activate.0(y1)))
AND.1-0(tt., X) → ACTIVATE.0(X)
ISNAT.0(n__s.0(n__length.1(x0))) → ISNAT.0(length.1(activate.1(x0)))
ACTIVATE.1(n__and.1-1(x0, y1)) → AND.1-1(x0, y1)
ISNATLIST.0(n__cons.1-1(n__and.1-1(x0, x1), y1)) → AND.1-1(isNat.1(and.1-1(activate.1(x0), x1)), n__isNatList.1(activate.1(y1)))
ISNATILIST.0(n__cons.0-0(n__and.0-0(x0, x1), y1)) → AND.1-1(isNat.0(and.0-0(activate.0(x0), x1)), n__isNatIList.0(activate.0(y1)))
The TRS R consists of the following rules:
activate.0(n__and.1-0(X1, X2)) → and.1-0(activate.1(X1), X2)
take.0-0(s.0(M), cons.1-0(N, IL)) → U31.1-0-0-1(and.1-1(isNatIList.0(activate.0(IL)), n__and.1-1(n__isNat.0(M), n__isNat.1(N))), activate.0(IL), M, N)
U31.1-0-1-1(tt., IL, M, N) → cons.1-0(activate.1(N), n__take.1-0(activate.1(M), activate.0(IL)))
and.1-0(tt., X) → activate.0(X)
activate.0(n__zeros.) → zeros.
and.0-0(X1, X2) → n__and.0-0(X1, X2)
activate.0(n__s.0(X)) → s.0(activate.0(X))
activate.0(n__take.0-1(X1, X2)) → take.0-1(activate.0(X1), activate.1(X2))
U21.1(tt.) → nil.
activate.1(n__isNat.1(X)) → isNat.1(X)
length.0(X) → n__length.0(X)
isNatList.0(n__take.0-0(V1, V2)) → and.1-1(isNat.0(activate.0(V1)), n__isNatIList.0(activate.0(V2)))
isNat.0(n__s.0(V1)) → isNat.0(activate.0(V1))
cons.1-0(X1, X2) → n__cons.1-0(X1, X2)
and.1-1(X1, X2) → n__and.1-1(X1, X2)
activate.0(n__s.1(X)) → s.1(activate.1(X))
isNat.0(X) → n__isNat.0(X)
activate.0(n__take.1-1(X1, X2)) → take.1-1(activate.1(X1), activate.1(X2))
activate.0(n__and.0-0(X1, X2)) → and.0-0(activate.0(X1), X2)
isNatList.0(n__cons.1-0(V1, V2)) → and.1-1(isNat.1(activate.1(V1)), n__isNatList.0(activate.0(V2)))
isNatIList.0(X) → n__isNatIList.0(X)
length.0(cons.0-1(N, L)) → U11.1-1(and.1-1(isNatList.1(activate.1(L)), n__isNat.0(N)), activate.1(L))
U31.1-1-0-0(tt., IL, M, N) → cons.0-0(activate.0(N), n__take.0-1(activate.0(M), activate.1(IL)))
cons.0-0(X1, X2) → n__cons.0-0(X1, X2)
s.0(X) → n__s.0(X)
U31.1-1-1-0(tt., IL, M, N) → cons.0-0(activate.0(N), n__take.1-1(activate.1(M), activate.1(IL)))
cons.0-1(X1, X2) → n__cons.0-1(X1, X2)
activate.1(n__isNatList.0(X)) → isNatList.0(X)
activate.0(n__cons.0-1(X1, X2)) → cons.0-1(activate.0(X1), X2)
and.0-1(X1, X2) → n__and.0-1(X1, X2)
isNat.0(n__length.1(V1)) → isNatList.1(activate.1(V1))
activate.1(n__isNatIList.1(X)) → isNatIList.1(X)
isNatIList.0(n__cons.1-1(V1, V2)) → and.1-1(isNat.1(activate.1(V1)), n__isNatIList.1(activate.1(V2)))
length.0(cons.1-1(N, L)) → U11.1-1(and.1-1(isNatList.1(activate.1(L)), n__isNat.1(N)), activate.1(L))
isNatIList.1(X) → n__isNatIList.1(X)
take.0-0(X1, X2) → n__take.0-0(X1, X2)
zeros. → n__zeros.
activate.0(n__take.1-0(X1, X2)) → take.1-0(activate.1(X1), activate.0(X2))
length.0(nil.) → 0.
isNat.1(X) → n__isNat.1(X)
activate.1(n__and.1-1(X1, X2)) → and.1-1(activate.1(X1), X2)
activate.0(n__cons.0-0(X1, X2)) → cons.0-0(activate.0(X1), X2)
isNatList.0(n__take.1-0(V1, V2)) → and.1-1(isNat.1(activate.1(V1)), n__isNatIList.0(activate.0(V2)))
take.1-1(X1, X2) → n__take.1-1(X1, X2)
activate.0(n__length.1(X)) → length.1(activate.1(X))
U31.1-0-0-0(tt., IL, M, N) → cons.0-0(activate.0(N), n__take.0-0(activate.0(M), activate.0(IL)))
isNat.0(n__length.0(V1)) → isNatList.0(activate.0(V1))
isNatIList.0(n__cons.1-0(V1, V2)) → and.1-1(isNat.1(activate.1(V1)), n__isNatIList.0(activate.0(V2)))
s.1(X) → n__s.1(X)
isNatList.0(n__cons.0-1(V1, V2)) → and.1-1(isNat.0(activate.0(V1)), n__isNatList.1(activate.1(V2)))
take.1-0(X1, X2) → n__take.1-0(X1, X2)
isNatIList.0(V) → isNatList.0(activate.0(V))
take.0-0(0., IL) → U21.1(isNatIList.0(IL))
activate.1(n__isNatIList.0(X)) → isNatIList.0(X)
isNatList.0(n__cons.0-0(V1, V2)) → and.1-1(isNat.0(activate.0(V1)), n__isNatList.0(activate.0(V2)))
isNatList.0(n__cons.1-1(V1, V2)) → and.1-1(isNat.1(activate.1(V1)), n__isNatList.1(activate.1(V2)))
activate.0(n__cons.1-1(X1, X2)) → cons.1-1(activate.1(X1), X2)
isNatList.0(n__take.1-1(V1, V2)) → and.1-1(isNat.1(activate.1(V1)), n__isNatIList.1(activate.1(V2)))
U31.1-1-0-1(tt., IL, M, N) → cons.1-0(activate.1(N), n__take.0-1(activate.0(M), activate.1(IL)))
isNatList.1(X) → n__isNatList.1(X)
U31.1-1-1-1(tt., IL, M, N) → cons.1-0(activate.1(N), n__take.1-1(activate.1(M), activate.1(IL)))
length.1(X) → n__length.1(X)
cons.1-1(X1, X2) → n__cons.1-1(X1, X2)
take.0-1(X1, X2) → n__take.0-1(X1, X2)
and.1-0(X1, X2) → n__and.1-0(X1, X2)
activate.0(X) → X
activate.0(n__nil.) → nil.
and.1-1(tt., X) → activate.1(X)
isNatIList.1(V) → isNatList.1(activate.1(V))
take.0-1(0., IL) → U21.1(isNatIList.1(IL))
activate.1(X) → X
0. → n__0.
U31.1-0-1-0(tt., IL, M, N) → cons.0-0(activate.0(N), n__take.1-0(activate.1(M), activate.0(IL)))
take.0-0(s.1(M), cons.1-1(N, IL)) → U31.1-1-1-1(and.1-1(isNatIList.1(activate.1(IL)), n__and.1-1(n__isNat.1(M), n__isNat.1(N))), activate.1(IL), M, N)
isNat.0(n__s.1(V1)) → isNat.1(activate.1(V1))
U31.1-0-0-1(tt., IL, M, N) → cons.1-0(activate.1(N), n__take.0-0(activate.0(M), activate.0(IL)))
U11.1-0(tt., L) → s.0(length.0(activate.0(L)))
isNatList.0(n__nil.) → tt.
take.0-0(s.0(M), cons.0-1(N, IL)) → U31.1-1-0-0(and.1-1(isNatIList.1(activate.1(IL)), n__and.1-1(n__isNat.0(M), n__isNat.0(N))), activate.1(IL), M, N)
isNatList.0(n__take.0-1(V1, V2)) → and.1-1(isNat.0(activate.0(V1)), n__isNatIList.1(activate.1(V2)))
activate.0(n__cons.1-0(X1, X2)) → cons.1-0(activate.1(X1), X2)
take.0-0(s.1(M), cons.0-1(N, IL)) → U31.1-1-1-0(and.1-1(isNatIList.1(activate.1(IL)), n__and.1-1(n__isNat.1(M), n__isNat.0(N))), activate.1(IL), M, N)
isNatIList.0(n__zeros.) → tt.
take.0-0(s.0(M), cons.0-0(N, IL)) → U31.1-0-0-0(and.1-1(isNatIList.0(activate.0(IL)), n__and.1-1(n__isNat.0(M), n__isNat.0(N))), activate.0(IL), M, N)
length.0(cons.1-0(N, L)) → U11.1-0(and.1-1(isNatList.0(activate.0(L)), n__isNat.1(N)), activate.0(L))
activate.0(n__length.0(X)) → length.0(activate.0(X))
activate.1(n__and.0-1(X1, X2)) → and.0-1(activate.0(X1), X2)
zeros. → cons.0-0(0., n__zeros.)
isNatIList.0(n__cons.0-0(V1, V2)) → and.1-1(isNat.0(activate.0(V1)), n__isNatIList.0(activate.0(V2)))
take.0-0(s.0(M), cons.1-1(N, IL)) → U31.1-1-0-1(and.1-1(isNatIList.1(activate.1(IL)), n__and.1-1(n__isNat.0(M), n__isNat.1(N))), activate.1(IL), M, N)
take.0-0(s.1(M), cons.0-0(N, IL)) → U31.1-0-1-0(and.1-1(isNatIList.0(activate.0(IL)), n__and.1-1(n__isNat.1(M), n__isNat.0(N))), activate.0(IL), M, N)
activate.0(n__0.) → 0.
activate.1(n__isNatList.1(X)) → isNatList.1(X)
take.0-0(s.1(M), cons.1-0(N, IL)) → U31.1-0-1-1(and.1-1(isNatIList.0(activate.0(IL)), n__and.1-1(n__isNat.1(M), n__isNat.1(N))), activate.0(IL), M, N)
activate.0(n__take.0-0(X1, X2)) → take.0-0(activate.0(X1), activate.0(X2))
isNat.0(n__0.) → tt.
nil. → n__nil.
U11.1-1(tt., L) → s.0(length.1(activate.1(L)))
length.0(cons.0-0(N, L)) → U11.1-0(and.1-1(isNatList.0(activate.0(L)), n__isNat.0(N)), activate.0(L))
activate.1(n__isNat.0(X)) → isNat.0(X)
isNatList.0(X) → n__isNatList.0(X)
isNatIList.0(n__cons.0-1(V1, V2)) → and.1-1(isNat.0(activate.0(V1)), n__isNatIList.1(activate.1(V2)))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].
The following pairs can be oriented strictly and are deleted.
ISNATILIST.0(n__cons.0-1(n__and.0-0(x0, x1), y1)) → AND.1-1(isNat.0(and.0-0(activate.0(x0), x1)), n__isNatIList.1(activate.1(y1)))
ISNATLIST.0(n__cons.0-0(n__and.0-0(x0, x1), y1)) → AND.1-1(isNat.0(and.0-0(activate.0(x0), x1)), n__isNatList.0(activate.0(y1)))
ACTIVATE.0(n__and.0-0(X1, X2)) → ACTIVATE.0(X1)
ISNATLIST.0(n__cons.0-1(n__and.0-0(x0, x1), y1)) → AND.1-1(isNat.0(and.0-0(activate.0(x0), x1)), n__isNatList.1(activate.1(y1)))
ISNATILIST.0(n__cons.0-0(n__and.0-0(x0, x1), y1)) → AND.1-1(isNat.0(and.0-0(activate.0(x0), x1)), n__isNatIList.0(activate.0(y1)))
The remaining pairs can at least be oriented weakly.
ACTIVATE.0(n__and.1-0(X1, X2)) → ACTIVATE.1(X1)
ISNAT.0(n__s.0(n__and.0-0(x0, x1))) → ISNAT.0(and.0-0(activate.0(x0), x1))
ISNAT.0(n__s.0(V1)) → ACTIVATE.0(V1)
ISNATILIST.0(n__cons.0-1(x0, y1)) → AND.1-1(isNat.0(x0), n__isNatIList.1(activate.1(y1)))
ISNATILIST.0(n__cons.1-1(n__and.1-1(x0, x1), y1)) → AND.1-1(isNat.1(and.1-1(activate.1(x0), x1)), n__isNatIList.1(activate.1(y1)))
ISNATILIST.0(n__cons.1-1(n__and.0-1(x0, x1), y1)) → AND.1-1(isNat.1(and.0-1(activate.0(x0), x1)), n__isNatIList.1(activate.1(y1)))
ACTIVATE.1(n__isNat.0(X)) → ISNAT.0(X)
ISNATILIST.0(n__cons.1-0(x0, y1)) → AND.1-1(isNat.1(x0), n__isNatIList.0(activate.0(y1)))
ISNATLIST.0(n__cons.0-1(x0, y1)) → AND.1-1(isNat.0(x0), n__isNatList.1(activate.1(y1)))
ISNATILIST.0(n__cons.1-0(n__and.0-1(x0, x1), y1)) → AND.1-1(isNat.1(and.0-1(activate.0(x0), x1)), n__isNatIList.0(activate.0(y1)))
ISNAT.0(n__s.1(V1)) → ACTIVATE.1(V1)
ISNAT.0(n__s.0(n__s.1(x0))) → ISNAT.0(s.1(activate.1(x0)))
ISNATLIST.0(n__cons.0-1(n__and.1-0(x0, x1), y1)) → AND.1-1(isNat.0(and.1-0(activate.1(x0), x1)), n__isNatList.1(activate.1(y1)))
ISNATLIST.0(n__cons.0-0(n__and.1-0(x0, x1), y1)) → AND.1-1(isNat.0(and.1-0(activate.1(x0), x1)), n__isNatList.0(activate.0(y1)))
ACTIVATE.0(n__s.1(X)) → ACTIVATE.1(X)
ISNATLIST.0(n__cons.1-1(n__and.0-1(x0, x1), y1)) → AND.1-1(isNat.1(and.0-1(activate.0(x0), x1)), n__isNatList.1(activate.1(y1)))
ACTIVATE.0(n__and.1-0(n__isNat.0(x0), y1)) → AND.1-0(isNat.0(x0), y1)
ISNAT.0(n__s.0(n__and.1-0(x0, x1))) → ISNAT.0(and.1-0(activate.1(x0), x1))
ISNATLIST.0(n__cons.0-0(n__0., y1)) → AND.1-1(isNat.0(0.), n__isNatList.0(activate.0(y1)))
ISNATILIST.0(n__cons.0-0(n__0., y1)) → AND.1-1(isNat.0(0.), n__isNatIList.0(activate.0(y1)))
ACTIVATE.1(n__isNatList.0(X)) → ISNATLIST.0(X)
ACTIVATE.1(n__and.1-1(n__isNat.1(x0), y1)) → AND.1-1(isNat.1(x0), y1)
ISNAT.0(n__s.0(n__s.0(x0))) → ISNAT.0(s.0(activate.0(x0)))
ISNATLIST.0(n__cons.1-0(n__and.1-1(x0, x1), y1)) → AND.1-1(isNat.1(and.1-1(activate.1(x0), x1)), n__isNatList.0(activate.0(y1)))
ACTIVATE.1(n__and.1-1(X1, X2)) → ACTIVATE.1(X1)
ISNATLIST.0(n__cons.0-0(x0, y1)) → AND.1-1(isNat.0(x0), n__isNatList.0(activate.0(y1)))
ACTIVATE.0(n__and.1-0(n__and.1-1(x0, x1), y1)) → AND.1-0(and.1-1(activate.1(x0), x1), y1)
ACTIVATE.1(n__and.1-1(n__and.1-1(x0, x1), y1)) → AND.1-1(and.1-1(activate.1(x0), x1), y1)
ISNATLIST.0(n__cons.1-1(x0, y1)) → AND.1-1(isNat.1(x0), n__isNatList.1(activate.1(y1)))
ISNATILIST.0(n__cons.0-0(x0, y1)) → AND.1-1(isNat.0(x0), n__isNatIList.0(activate.0(y1)))
ACTIVATE.0(n__and.1-0(x0, y1)) → AND.1-0(x0, y1)
ISNATILIST.0(n__cons.0-1(n__and.1-0(x0, x1), y1)) → AND.1-1(isNat.0(and.1-0(activate.1(x0), x1)), n__isNatIList.1(activate.1(y1)))
AND.1-1(tt., X) → ACTIVATE.1(X)
ACTIVATE.0(n__and.1-0(n__and.0-1(x0, x1), y1)) → AND.1-0(and.0-1(activate.0(x0), x1), y1)
ISNATILIST.0(n__cons.1-0(n__and.1-1(x0, x1), y1)) → AND.1-1(isNat.1(and.1-1(activate.1(x0), x1)), n__isNatIList.0(activate.0(y1)))
ACTIVATE.1(n__and.1-1(n__and.0-1(x0, x1), y1)) → AND.1-1(and.0-1(activate.0(x0), x1), y1)
ISNATILIST.0(n__cons.1-1(x0, y1)) → AND.1-1(isNat.1(x0), n__isNatIList.1(activate.1(y1)))
ISNAT.0(n__s.0(x0)) → ISNAT.0(x0)
ISNATILIST.0(n__cons.0-1(n__0., y1)) → AND.1-1(isNat.0(0.), n__isNatIList.1(activate.1(y1)))
ACTIVATE.1(n__isNatIList.0(X)) → ISNATILIST.0(X)
ISNATLIST.0(n__cons.1-0(x0, y1)) → AND.1-1(isNat.1(x0), n__isNatList.0(activate.0(y1)))
ISNATLIST.0(n__cons.0-1(n__0., y1)) → AND.1-1(isNat.0(0.), n__isNatList.1(activate.1(y1)))
ACTIVATE.1(n__and.1-1(n__isNat.0(x0), y1)) → AND.1-1(isNat.0(x0), y1)
ISNAT.0(n__s.0(n__length.0(x0))) → ISNAT.0(length.0(activate.0(x0)))
ACTIVATE.1(n__and.0-1(X1, X2)) → ACTIVATE.0(X1)
ISNATILIST.0(n__cons.0-0(n__and.1-0(x0, x1), y1)) → AND.1-1(isNat.0(and.1-0(activate.1(x0), x1)), n__isNatIList.0(activate.0(y1)))
ACTIVATE.0(n__and.1-0(n__isNat.1(x0), y1)) → AND.1-0(isNat.1(x0), y1)
ACTIVATE.0(n__s.0(X)) → ACTIVATE.0(X)
ISNATLIST.0(n__cons.1-0(n__and.0-1(x0, x1), y1)) → AND.1-1(isNat.1(and.0-1(activate.0(x0), x1)), n__isNatList.0(activate.0(y1)))
AND.1-0(tt., X) → ACTIVATE.0(X)
ISNAT.0(n__s.0(n__length.1(x0))) → ISNAT.0(length.1(activate.1(x0)))
ACTIVATE.1(n__and.1-1(x0, y1)) → AND.1-1(x0, y1)
ISNATLIST.0(n__cons.1-1(n__and.1-1(x0, x1), y1)) → AND.1-1(isNat.1(and.1-1(activate.1(x0), x1)), n__isNatList.1(activate.1(y1)))
Used ordering: Polynomial interpretation [25]:
POL(0.) = 0
POL(ACTIVATE.0(x1)) = x1
POL(ACTIVATE.1(x1)) = x1
POL(AND.1-0(x1, x2)) = x2
POL(AND.1-1(x1, x2)) = x2
POL(ISNAT.0(x1)) = x1
POL(ISNATILIST.0(x1)) = x1
POL(ISNATLIST.0(x1)) = x1
POL(U11.1-0(x1, x2)) = x2
POL(U11.1-1(x1, x2)) = 1
POL(U21.1(x1)) = 0
POL(U31.1-0-0-0(x1, x2, x3, x4)) = x2 + x3 + x4
POL(U31.1-0-0-1(x1, x2, x3, x4)) = x2 + x3
POL(U31.1-0-1-0(x1, x2, x3, x4)) = x2 + x3 + x4
POL(U31.1-0-1-1(x1, x2, x3, x4)) = x2
POL(U31.1-1-0-0(x1, x2, x3, x4)) = 1 + x2 + x3 + x4
POL(U31.1-1-0-1(x1, x2, x3, x4)) = 1 + x2 + x3
POL(U31.1-1-1-0(x1, x2, x3, x4)) = 1 + x4
POL(U31.1-1-1-1(x1, x2, x3, x4)) = 1
POL(activate.0(x1)) = x1
POL(activate.1(x1)) = x1
POL(and.0-0(x1, x2)) = 1 + x1 + x2
POL(and.0-1(x1, x2)) = x1 + x2
POL(and.1-0(x1, x2)) = x1 + x2
POL(and.1-1(x1, x2)) = x1 + x2
POL(cons.0-0(x1, x2)) = x1 + x2
POL(cons.0-1(x1, x2)) = 1 + x1 + x2
POL(cons.1-0(x1, x2)) = x2
POL(cons.1-1(x1, x2)) = 1 + x2
POL(isNat.0(x1)) = x1
POL(isNat.1(x1)) = 0
POL(isNatIList.0(x1)) = x1
POL(isNatIList.1(x1)) = 1
POL(isNatList.0(x1)) = x1
POL(isNatList.1(x1)) = 1
POL(length.0(x1)) = x1
POL(length.1(x1)) = 1
POL(n__0.) = 0
POL(n__and.0-0(x1, x2)) = 1 + x1 + x2
POL(n__and.0-1(x1, x2)) = x1 + x2
POL(n__and.1-0(x1, x2)) = x1 + x2
POL(n__and.1-1(x1, x2)) = x1 + x2
POL(n__cons.0-0(x1, x2)) = x1 + x2
POL(n__cons.0-1(x1, x2)) = 1 + x1 + x2
POL(n__cons.1-0(x1, x2)) = x2
POL(n__cons.1-1(x1, x2)) = 1 + x2
POL(n__isNat.0(x1)) = x1
POL(n__isNat.1(x1)) = 0
POL(n__isNatIList.0(x1)) = x1
POL(n__isNatIList.1(x1)) = 1
POL(n__isNatList.0(x1)) = x1
POL(n__isNatList.1(x1)) = 1
POL(n__length.0(x1)) = x1
POL(n__length.1(x1)) = 1
POL(n__nil.) = 0
POL(n__s.0(x1)) = x1
POL(n__s.1(x1)) = x1
POL(n__take.0-0(x1, x2)) = x1 + x2
POL(n__take.0-1(x1, x2)) = 1 + x1 + x2
POL(n__take.1-0(x1, x2)) = x2
POL(n__take.1-1(x1, x2)) = 1
POL(n__zeros.) = 0
POL(nil.) = 0
POL(s.0(x1)) = x1
POL(s.1(x1)) = x1
POL(take.0-0(x1, x2)) = x1 + x2
POL(take.0-1(x1, x2)) = 1 + x1 + x2
POL(take.1-0(x1, x2)) = x2
POL(take.1-1(x1, x2)) = 1
POL(tt.) = 0
POL(zeros.) = 0
The following usable rules [17] were oriented:
take.0-0(s.0(M), cons.0-0(N, IL)) → U31.1-0-0-0(and.1-1(isNatIList.0(activate.0(IL)), n__and.1-1(n__isNat.0(M), n__isNat.0(N))), activate.0(IL), M, N)
length.0(cons.1-0(N, L)) → U11.1-0(and.1-1(isNatList.0(activate.0(L)), n__isNat.1(N)), activate.0(L))
take.0-0(s.1(M), cons.0-1(N, IL)) → U31.1-1-1-0(and.1-1(isNatIList.1(activate.1(IL)), n__and.1-1(n__isNat.1(M), n__isNat.0(N))), activate.1(IL), M, N)
isNatIList.0(n__zeros.) → tt.
activate.0(n__cons.1-0(X1, X2)) → cons.1-0(activate.1(X1), X2)
isNatList.0(n__nil.) → tt.
take.0-0(s.0(M), cons.0-1(N, IL)) → U31.1-1-0-0(and.1-1(isNatIList.1(activate.1(IL)), n__and.1-1(n__isNat.0(M), n__isNat.0(N))), activate.1(IL), M, N)
U31.1-0-0-1(tt., IL, M, N) → cons.1-0(activate.1(N), n__take.0-0(activate.0(M), activate.0(IL)))
U11.1-0(tt., L) → s.0(length.0(activate.0(L)))
take.0-0(s.1(M), cons.1-1(N, IL)) → U31.1-1-1-1(and.1-1(isNatIList.1(activate.1(IL)), n__and.1-1(n__isNat.1(M), n__isNat.1(N))), activate.1(IL), M, N)
isNat.0(n__s.1(V1)) → isNat.1(activate.1(V1))
0. → n__0.
U31.1-0-1-0(tt., IL, M, N) → cons.0-0(activate.0(N), n__take.1-0(activate.1(M), activate.0(IL)))
take.0-1(0., IL) → U21.1(isNatIList.1(IL))
activate.1(X) → X
isNatIList.1(V) → isNatList.1(activate.1(V))
activate.0(n__nil.) → nil.
activate.0(X) → X
and.1-0(X1, X2) → n__and.1-0(X1, X2)
take.0-1(X1, X2) → n__take.0-1(X1, X2)
cons.1-1(X1, X2) → n__cons.1-1(X1, X2)
length.1(X) → n__length.1(X)
U31.1-1-1-1(tt., IL, M, N) → cons.1-0(activate.1(N), n__take.1-1(activate.1(M), activate.1(IL)))
isNatList.1(X) → n__isNatList.1(X)
U31.1-1-0-1(tt., IL, M, N) → cons.1-0(activate.1(N), n__take.0-1(activate.0(M), activate.1(IL)))
activate.0(n__cons.1-1(X1, X2)) → cons.1-1(activate.1(X1), X2)
length.0(cons.0-0(N, L)) → U11.1-0(and.1-1(isNatList.0(activate.0(L)), n__isNat.0(N)), activate.0(L))
U11.1-1(tt., L) → s.0(length.1(activate.1(L)))
isNatList.0(X) → n__isNatList.0(X)
activate.0(n__take.0-0(X1, X2)) → take.0-0(activate.0(X1), activate.0(X2))
take.0-0(s.1(M), cons.1-0(N, IL)) → U31.1-0-1-1(and.1-1(isNatIList.0(activate.0(IL)), n__and.1-1(n__isNat.1(M), n__isNat.1(N))), activate.0(IL), M, N)
nil. → n__nil.
isNat.0(n__0.) → tt.
take.0-0(s.1(M), cons.0-0(N, IL)) → U31.1-0-1-0(and.1-1(isNatIList.0(activate.0(IL)), n__and.1-1(n__isNat.1(M), n__isNat.0(N))), activate.0(IL), M, N)
take.0-0(s.0(M), cons.1-1(N, IL)) → U31.1-1-0-1(and.1-1(isNatIList.1(activate.1(IL)), n__and.1-1(n__isNat.0(M), n__isNat.1(N))), activate.1(IL), M, N)
activate.1(n__isNatList.1(X)) → isNatList.1(X)
activate.0(n__0.) → 0.
activate.1(n__and.0-1(X1, X2)) → and.0-1(activate.0(X1), X2)
activate.0(n__length.0(X)) → length.0(activate.0(X))
zeros. → cons.0-0(0., n__zeros.)
activate.0(n__s.1(X)) → s.1(activate.1(X))
isNat.0(X) → n__isNat.0(X)
cons.1-0(X1, X2) → n__cons.1-0(X1, X2)
and.1-1(X1, X2) → n__and.1-1(X1, X2)
isNatIList.0(X) → n__isNatIList.0(X)
activate.0(n__take.1-1(X1, X2)) → take.1-1(activate.1(X1), activate.1(X2))
activate.0(n__and.0-0(X1, X2)) → and.0-0(activate.0(X1), X2)
activate.0(n__take.0-1(X1, X2)) → take.0-1(activate.0(X1), activate.1(X2))
U21.1(tt.) → nil.
and.0-0(X1, X2) → n__and.0-0(X1, X2)
activate.0(n__s.0(X)) → s.0(activate.0(X))
activate.1(n__isNat.1(X)) → isNat.1(X)
length.0(X) → n__length.0(X)
activate.0(n__zeros.) → zeros.
and.1-0(tt., X) → activate.0(X)
activate.0(n__and.1-0(X1, X2)) → and.1-0(activate.1(X1), X2)
U31.1-0-1-1(tt., IL, M, N) → cons.1-0(activate.1(N), n__take.1-0(activate.1(M), activate.0(IL)))
take.0-0(s.0(M), cons.1-0(N, IL)) → U31.1-0-0-1(and.1-1(isNatIList.0(activate.0(IL)), n__and.1-1(n__isNat.0(M), n__isNat.1(N))), activate.0(IL), M, N)
U31.1-0-0-0(tt., IL, M, N) → cons.0-0(activate.0(N), n__take.0-0(activate.0(M), activate.0(IL)))
s.1(X) → n__s.1(X)
take.1-0(X1, X2) → n__take.1-0(X1, X2)
take.0-0(0., IL) → U21.1(isNatIList.0(IL))
activate.0(n__take.1-0(X1, X2)) → take.1-0(activate.1(X1), activate.0(X2))
length.0(nil.) → 0.
isNat.1(X) → n__isNat.1(X)
activate.0(n__cons.0-0(X1, X2)) → cons.0-0(activate.0(X1), X2)
take.1-1(X1, X2) → n__take.1-1(X1, X2)
activate.0(n__length.1(X)) → length.1(activate.1(X))
isNat.0(n__length.1(V1)) → isNatList.1(activate.1(V1))
and.0-1(X1, X2) → n__and.0-1(X1, X2)
activate.1(n__isNatIList.1(X)) → isNatIList.1(X)
isNatIList.1(X) → n__isNatIList.1(X)
length.0(cons.1-1(N, L)) → U11.1-1(and.1-1(isNatList.1(activate.1(L)), n__isNat.1(N)), activate.1(L))
zeros. → n__zeros.
take.0-0(X1, X2) → n__take.0-0(X1, X2)
U31.1-1-0-0(tt., IL, M, N) → cons.0-0(activate.0(N), n__take.0-1(activate.0(M), activate.1(IL)))
length.0(cons.0-1(N, L)) → U11.1-1(and.1-1(isNatList.1(activate.1(L)), n__isNat.0(N)), activate.1(L))
s.0(X) → n__s.0(X)
cons.0-0(X1, X2) → n__cons.0-0(X1, X2)
cons.0-1(X1, X2) → n__cons.0-1(X1, X2)
U31.1-1-1-0(tt., IL, M, N) → cons.0-0(activate.0(N), n__take.1-1(activate.1(M), activate.1(IL)))
activate.0(n__cons.0-1(X1, X2)) → cons.0-1(activate.0(X1), X2)
isNatList.0(n__take.1-1(V1, V2)) → and.1-1(isNat.1(activate.1(V1)), n__isNatIList.1(activate.1(V2)))
isNatIList.0(n__cons.1-1(V1, V2)) → and.1-1(isNat.1(activate.1(V1)), n__isNatIList.1(activate.1(V2)))
isNatList.0(n__take.0-0(V1, V2)) → and.1-1(isNat.0(activate.0(V1)), n__isNatIList.0(activate.0(V2)))
isNatList.0(n__take.1-0(V1, V2)) → and.1-1(isNat.1(activate.1(V1)), n__isNatIList.0(activate.0(V2)))
isNat.0(n__s.0(V1)) → isNat.0(activate.0(V1))
isNatIList.0(n__cons.0-0(V1, V2)) → and.1-1(isNat.0(activate.0(V1)), n__isNatIList.0(activate.0(V2)))
isNat.0(n__length.0(V1)) → isNatList.0(activate.0(V1))
isNatList.0(n__take.0-1(V1, V2)) → and.1-1(isNat.0(activate.0(V1)), n__isNatIList.1(activate.1(V2)))
activate.1(n__isNatList.0(X)) → isNatList.0(X)
and.1-1(tt., X) → activate.1(X)
isNatIList.0(n__cons.1-0(V1, V2)) → and.1-1(isNat.1(activate.1(V1)), n__isNatIList.0(activate.0(V2)))
isNatList.0(n__cons.0-1(V1, V2)) → and.1-1(isNat.0(activate.0(V1)), n__isNatList.1(activate.1(V2)))
isNatIList.0(V) → isNatList.0(activate.0(V))
activate.1(n__isNatIList.0(X)) → isNatIList.0(X)
activate.1(n__isNat.0(X)) → isNat.0(X)
isNatList.0(n__cons.1-0(V1, V2)) → and.1-1(isNat.1(activate.1(V1)), n__isNatList.0(activate.0(V2)))
isNatList.0(n__cons.0-0(V1, V2)) → and.1-1(isNat.0(activate.0(V1)), n__isNatList.0(activate.0(V2)))
isNatList.0(n__cons.1-1(V1, V2)) → and.1-1(isNat.1(activate.1(V1)), n__isNatList.1(activate.1(V2)))
activate.1(n__and.1-1(X1, X2)) → and.1-1(activate.1(X1), X2)
isNatIList.0(n__cons.0-1(V1, V2)) → and.1-1(isNat.0(activate.0(V1)), n__isNatIList.1(activate.1(V2)))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ SemLabProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ SemLabProof2
↳ QDPOrderProof
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
ACTIVATE.0(n__and.1-0(X1, X2)) → ACTIVATE.1(X1)
ISNAT.0(n__s.0(n__and.0-0(x0, x1))) → ISNAT.0(and.0-0(activate.0(x0), x1))
ISNAT.0(n__s.0(V1)) → ACTIVATE.0(V1)
ISNATILIST.0(n__cons.0-1(x0, y1)) → AND.1-1(isNat.0(x0), n__isNatIList.1(activate.1(y1)))
ISNATILIST.0(n__cons.1-1(n__and.1-1(x0, x1), y1)) → AND.1-1(isNat.1(and.1-1(activate.1(x0), x1)), n__isNatIList.1(activate.1(y1)))
ISNATILIST.0(n__cons.1-1(n__and.0-1(x0, x1), y1)) → AND.1-1(isNat.1(and.0-1(activate.0(x0), x1)), n__isNatIList.1(activate.1(y1)))
ACTIVATE.1(n__isNat.0(X)) → ISNAT.0(X)
ISNATILIST.0(n__cons.1-0(x0, y1)) → AND.1-1(isNat.1(x0), n__isNatIList.0(activate.0(y1)))
ISNATLIST.0(n__cons.0-1(x0, y1)) → AND.1-1(isNat.0(x0), n__isNatList.1(activate.1(y1)))
ISNATILIST.0(n__cons.1-0(n__and.0-1(x0, x1), y1)) → AND.1-1(isNat.1(and.0-1(activate.0(x0), x1)), n__isNatIList.0(activate.0(y1)))
ISNAT.0(n__s.1(V1)) → ACTIVATE.1(V1)
ISNAT.0(n__s.0(n__s.1(x0))) → ISNAT.0(s.1(activate.1(x0)))
ISNATLIST.0(n__cons.0-1(n__and.1-0(x0, x1), y1)) → AND.1-1(isNat.0(and.1-0(activate.1(x0), x1)), n__isNatList.1(activate.1(y1)))
ISNATLIST.0(n__cons.0-0(n__and.1-0(x0, x1), y1)) → AND.1-1(isNat.0(and.1-0(activate.1(x0), x1)), n__isNatList.0(activate.0(y1)))
ACTIVATE.0(n__s.1(X)) → ACTIVATE.1(X)
ISNATLIST.0(n__cons.1-1(n__and.0-1(x0, x1), y1)) → AND.1-1(isNat.1(and.0-1(activate.0(x0), x1)), n__isNatList.1(activate.1(y1)))
ISNAT.0(n__s.0(n__and.1-0(x0, x1))) → ISNAT.0(and.1-0(activate.1(x0), x1))
ACTIVATE.0(n__and.1-0(n__isNat.0(x0), y1)) → AND.1-0(isNat.0(x0), y1)
ISNATLIST.0(n__cons.0-0(n__0., y1)) → AND.1-1(isNat.0(0.), n__isNatList.0(activate.0(y1)))
ISNATILIST.0(n__cons.0-0(n__0., y1)) → AND.1-1(isNat.0(0.), n__isNatIList.0(activate.0(y1)))
ACTIVATE.1(n__and.1-1(n__isNat.1(x0), y1)) → AND.1-1(isNat.1(x0), y1)
ACTIVATE.1(n__isNatList.0(X)) → ISNATLIST.0(X)
ISNAT.0(n__s.0(n__s.0(x0))) → ISNAT.0(s.0(activate.0(x0)))
ISNATLIST.0(n__cons.1-0(n__and.1-1(x0, x1), y1)) → AND.1-1(isNat.1(and.1-1(activate.1(x0), x1)), n__isNatList.0(activate.0(y1)))
ACTIVATE.1(n__and.1-1(X1, X2)) → ACTIVATE.1(X1)
ISNATLIST.0(n__cons.0-0(x0, y1)) → AND.1-1(isNat.0(x0), n__isNatList.0(activate.0(y1)))
ACTIVATE.0(n__and.1-0(n__and.1-1(x0, x1), y1)) → AND.1-0(and.1-1(activate.1(x0), x1), y1)
ACTIVATE.1(n__and.1-1(n__and.1-1(x0, x1), y1)) → AND.1-1(and.1-1(activate.1(x0), x1), y1)
ISNATLIST.0(n__cons.1-1(x0, y1)) → AND.1-1(isNat.1(x0), n__isNatList.1(activate.1(y1)))
ISNATILIST.0(n__cons.0-0(x0, y1)) → AND.1-1(isNat.0(x0), n__isNatIList.0(activate.0(y1)))
ACTIVATE.0(n__and.1-0(x0, y1)) → AND.1-0(x0, y1)
ISNATILIST.0(n__cons.0-1(n__and.1-0(x0, x1), y1)) → AND.1-1(isNat.0(and.1-0(activate.1(x0), x1)), n__isNatIList.1(activate.1(y1)))
AND.1-1(tt., X) → ACTIVATE.1(X)
ACTIVATE.0(n__and.1-0(n__and.0-1(x0, x1), y1)) → AND.1-0(and.0-1(activate.0(x0), x1), y1)
ISNATILIST.0(n__cons.1-0(n__and.1-1(x0, x1), y1)) → AND.1-1(isNat.1(and.1-1(activate.1(x0), x1)), n__isNatIList.0(activate.0(y1)))
ACTIVATE.1(n__and.1-1(n__and.0-1(x0, x1), y1)) → AND.1-1(and.0-1(activate.0(x0), x1), y1)
ISNATILIST.0(n__cons.1-1(x0, y1)) → AND.1-1(isNat.1(x0), n__isNatIList.1(activate.1(y1)))
ISNAT.0(n__s.0(x0)) → ISNAT.0(x0)
ISNATILIST.0(n__cons.0-1(n__0., y1)) → AND.1-1(isNat.0(0.), n__isNatIList.1(activate.1(y1)))
ACTIVATE.1(n__isNatIList.0(X)) → ISNATILIST.0(X)
ISNATLIST.0(n__cons.1-0(x0, y1)) → AND.1-1(isNat.1(x0), n__isNatList.0(activate.0(y1)))
ISNATLIST.0(n__cons.0-1(n__0., y1)) → AND.1-1(isNat.0(0.), n__isNatList.1(activate.1(y1)))
ACTIVATE.1(n__and.1-1(n__isNat.0(x0), y1)) → AND.1-1(isNat.0(x0), y1)
ISNAT.0(n__s.0(n__length.0(x0))) → ISNAT.0(length.0(activate.0(x0)))
ACTIVATE.1(n__and.0-1(X1, X2)) → ACTIVATE.0(X1)
ISNATILIST.0(n__cons.0-0(n__and.1-0(x0, x1), y1)) → AND.1-1(isNat.0(and.1-0(activate.1(x0), x1)), n__isNatIList.0(activate.0(y1)))
ACTIVATE.0(n__and.1-0(n__isNat.1(x0), y1)) → AND.1-0(isNat.1(x0), y1)
ACTIVATE.0(n__s.0(X)) → ACTIVATE.0(X)
AND.1-0(tt., X) → ACTIVATE.0(X)
ISNATLIST.0(n__cons.1-0(n__and.0-1(x0, x1), y1)) → AND.1-1(isNat.1(and.0-1(activate.0(x0), x1)), n__isNatList.0(activate.0(y1)))
ISNAT.0(n__s.0(n__length.1(x0))) → ISNAT.0(length.1(activate.1(x0)))
ACTIVATE.1(n__and.1-1(x0, y1)) → AND.1-1(x0, y1)
ISNATLIST.0(n__cons.1-1(n__and.1-1(x0, x1), y1)) → AND.1-1(isNat.1(and.1-1(activate.1(x0), x1)), n__isNatList.1(activate.1(y1)))
The TRS R consists of the following rules:
activate.0(n__and.1-0(X1, X2)) → and.1-0(activate.1(X1), X2)
take.0-0(s.0(M), cons.1-0(N, IL)) → U31.1-0-0-1(and.1-1(isNatIList.0(activate.0(IL)), n__and.1-1(n__isNat.0(M), n__isNat.1(N))), activate.0(IL), M, N)
U31.1-0-1-1(tt., IL, M, N) → cons.1-0(activate.1(N), n__take.1-0(activate.1(M), activate.0(IL)))
and.1-0(tt., X) → activate.0(X)
activate.0(n__zeros.) → zeros.
and.0-0(X1, X2) → n__and.0-0(X1, X2)
activate.0(n__s.0(X)) → s.0(activate.0(X))
activate.0(n__take.0-1(X1, X2)) → take.0-1(activate.0(X1), activate.1(X2))
U21.1(tt.) → nil.
activate.1(n__isNat.1(X)) → isNat.1(X)
length.0(X) → n__length.0(X)
isNatList.0(n__take.0-0(V1, V2)) → and.1-1(isNat.0(activate.0(V1)), n__isNatIList.0(activate.0(V2)))
isNat.0(n__s.0(V1)) → isNat.0(activate.0(V1))
cons.1-0(X1, X2) → n__cons.1-0(X1, X2)
and.1-1(X1, X2) → n__and.1-1(X1, X2)
activate.0(n__s.1(X)) → s.1(activate.1(X))
isNat.0(X) → n__isNat.0(X)
activate.0(n__take.1-1(X1, X2)) → take.1-1(activate.1(X1), activate.1(X2))
activate.0(n__and.0-0(X1, X2)) → and.0-0(activate.0(X1), X2)
isNatList.0(n__cons.1-0(V1, V2)) → and.1-1(isNat.1(activate.1(V1)), n__isNatList.0(activate.0(V2)))
isNatIList.0(X) → n__isNatIList.0(X)
length.0(cons.0-1(N, L)) → U11.1-1(and.1-1(isNatList.1(activate.1(L)), n__isNat.0(N)), activate.1(L))
U31.1-1-0-0(tt., IL, M, N) → cons.0-0(activate.0(N), n__take.0-1(activate.0(M), activate.1(IL)))
cons.0-0(X1, X2) → n__cons.0-0(X1, X2)
s.0(X) → n__s.0(X)
U31.1-1-1-0(tt., IL, M, N) → cons.0-0(activate.0(N), n__take.1-1(activate.1(M), activate.1(IL)))
cons.0-1(X1, X2) → n__cons.0-1(X1, X2)
activate.1(n__isNatList.0(X)) → isNatList.0(X)
activate.0(n__cons.0-1(X1, X2)) → cons.0-1(activate.0(X1), X2)
and.0-1(X1, X2) → n__and.0-1(X1, X2)
isNat.0(n__length.1(V1)) → isNatList.1(activate.1(V1))
activate.1(n__isNatIList.1(X)) → isNatIList.1(X)
isNatIList.0(n__cons.1-1(V1, V2)) → and.1-1(isNat.1(activate.1(V1)), n__isNatIList.1(activate.1(V2)))
length.0(cons.1-1(N, L)) → U11.1-1(and.1-1(isNatList.1(activate.1(L)), n__isNat.1(N)), activate.1(L))
isNatIList.1(X) → n__isNatIList.1(X)
take.0-0(X1, X2) → n__take.0-0(X1, X2)
zeros. → n__zeros.
activate.0(n__take.1-0(X1, X2)) → take.1-0(activate.1(X1), activate.0(X2))
length.0(nil.) → 0.
isNat.1(X) → n__isNat.1(X)
activate.1(n__and.1-1(X1, X2)) → and.1-1(activate.1(X1), X2)
activate.0(n__cons.0-0(X1, X2)) → cons.0-0(activate.0(X1), X2)
isNatList.0(n__take.1-0(V1, V2)) → and.1-1(isNat.1(activate.1(V1)), n__isNatIList.0(activate.0(V2)))
take.1-1(X1, X2) → n__take.1-1(X1, X2)
activate.0(n__length.1(X)) → length.1(activate.1(X))
U31.1-0-0-0(tt., IL, M, N) → cons.0-0(activate.0(N), n__take.0-0(activate.0(M), activate.0(IL)))
isNat.0(n__length.0(V1)) → isNatList.0(activate.0(V1))
isNatIList.0(n__cons.1-0(V1, V2)) → and.1-1(isNat.1(activate.1(V1)), n__isNatIList.0(activate.0(V2)))
s.1(X) → n__s.1(X)
isNatList.0(n__cons.0-1(V1, V2)) → and.1-1(isNat.0(activate.0(V1)), n__isNatList.1(activate.1(V2)))
take.1-0(X1, X2) → n__take.1-0(X1, X2)
isNatIList.0(V) → isNatList.0(activate.0(V))
take.0-0(0., IL) → U21.1(isNatIList.0(IL))
activate.1(n__isNatIList.0(X)) → isNatIList.0(X)
isNatList.0(n__cons.0-0(V1, V2)) → and.1-1(isNat.0(activate.0(V1)), n__isNatList.0(activate.0(V2)))
isNatList.0(n__cons.1-1(V1, V2)) → and.1-1(isNat.1(activate.1(V1)), n__isNatList.1(activate.1(V2)))
activate.0(n__cons.1-1(X1, X2)) → cons.1-1(activate.1(X1), X2)
isNatList.0(n__take.1-1(V1, V2)) → and.1-1(isNat.1(activate.1(V1)), n__isNatIList.1(activate.1(V2)))
U31.1-1-0-1(tt., IL, M, N) → cons.1-0(activate.1(N), n__take.0-1(activate.0(M), activate.1(IL)))
isNatList.1(X) → n__isNatList.1(X)
U31.1-1-1-1(tt., IL, M, N) → cons.1-0(activate.1(N), n__take.1-1(activate.1(M), activate.1(IL)))
length.1(X) → n__length.1(X)
cons.1-1(X1, X2) → n__cons.1-1(X1, X2)
take.0-1(X1, X2) → n__take.0-1(X1, X2)
and.1-0(X1, X2) → n__and.1-0(X1, X2)
activate.0(X) → X
activate.0(n__nil.) → nil.
and.1-1(tt., X) → activate.1(X)
isNatIList.1(V) → isNatList.1(activate.1(V))
take.0-1(0., IL) → U21.1(isNatIList.1(IL))
activate.1(X) → X
0. → n__0.
U31.1-0-1-0(tt., IL, M, N) → cons.0-0(activate.0(N), n__take.1-0(activate.1(M), activate.0(IL)))
take.0-0(s.1(M), cons.1-1(N, IL)) → U31.1-1-1-1(and.1-1(isNatIList.1(activate.1(IL)), n__and.1-1(n__isNat.1(M), n__isNat.1(N))), activate.1(IL), M, N)
isNat.0(n__s.1(V1)) → isNat.1(activate.1(V1))
U31.1-0-0-1(tt., IL, M, N) → cons.1-0(activate.1(N), n__take.0-0(activate.0(M), activate.0(IL)))
U11.1-0(tt., L) → s.0(length.0(activate.0(L)))
isNatList.0(n__nil.) → tt.
take.0-0(s.0(M), cons.0-1(N, IL)) → U31.1-1-0-0(and.1-1(isNatIList.1(activate.1(IL)), n__and.1-1(n__isNat.0(M), n__isNat.0(N))), activate.1(IL), M, N)
isNatList.0(n__take.0-1(V1, V2)) → and.1-1(isNat.0(activate.0(V1)), n__isNatIList.1(activate.1(V2)))
activate.0(n__cons.1-0(X1, X2)) → cons.1-0(activate.1(X1), X2)
take.0-0(s.1(M), cons.0-1(N, IL)) → U31.1-1-1-0(and.1-1(isNatIList.1(activate.1(IL)), n__and.1-1(n__isNat.1(M), n__isNat.0(N))), activate.1(IL), M, N)
isNatIList.0(n__zeros.) → tt.
take.0-0(s.0(M), cons.0-0(N, IL)) → U31.1-0-0-0(and.1-1(isNatIList.0(activate.0(IL)), n__and.1-1(n__isNat.0(M), n__isNat.0(N))), activate.0(IL), M, N)
length.0(cons.1-0(N, L)) → U11.1-0(and.1-1(isNatList.0(activate.0(L)), n__isNat.1(N)), activate.0(L))
activate.0(n__length.0(X)) → length.0(activate.0(X))
activate.1(n__and.0-1(X1, X2)) → and.0-1(activate.0(X1), X2)
zeros. → cons.0-0(0., n__zeros.)
isNatIList.0(n__cons.0-0(V1, V2)) → and.1-1(isNat.0(activate.0(V1)), n__isNatIList.0(activate.0(V2)))
take.0-0(s.0(M), cons.1-1(N, IL)) → U31.1-1-0-1(and.1-1(isNatIList.1(activate.1(IL)), n__and.1-1(n__isNat.0(M), n__isNat.1(N))), activate.1(IL), M, N)
take.0-0(s.1(M), cons.0-0(N, IL)) → U31.1-0-1-0(and.1-1(isNatIList.0(activate.0(IL)), n__and.1-1(n__isNat.1(M), n__isNat.0(N))), activate.0(IL), M, N)
activate.0(n__0.) → 0.
activate.1(n__isNatList.1(X)) → isNatList.1(X)
take.0-0(s.1(M), cons.1-0(N, IL)) → U31.1-0-1-1(and.1-1(isNatIList.0(activate.0(IL)), n__and.1-1(n__isNat.1(M), n__isNat.1(N))), activate.0(IL), M, N)
activate.0(n__take.0-0(X1, X2)) → take.0-0(activate.0(X1), activate.0(X2))
isNat.0(n__0.) → tt.
nil. → n__nil.
U11.1-1(tt., L) → s.0(length.1(activate.1(L)))
length.0(cons.0-0(N, L)) → U11.1-0(and.1-1(isNatList.0(activate.0(L)), n__isNat.0(N)), activate.0(L))
activate.1(n__isNat.0(X)) → isNat.0(X)
isNatList.0(X) → n__isNatList.0(X)
isNatIList.0(n__cons.0-1(V1, V2)) → and.1-1(isNat.0(activate.0(V1)), n__isNatIList.1(activate.1(V2)))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].
The following pairs can be oriented strictly and are deleted.
ISNATILIST.0(n__cons.0-1(x0, y1)) → AND.1-1(isNat.0(x0), n__isNatIList.1(activate.1(y1)))
ISNATILIST.0(n__cons.1-1(n__and.1-1(x0, x1), y1)) → AND.1-1(isNat.1(and.1-1(activate.1(x0), x1)), n__isNatIList.1(activate.1(y1)))
ISNATILIST.0(n__cons.1-1(n__and.0-1(x0, x1), y1)) → AND.1-1(isNat.1(and.0-1(activate.0(x0), x1)), n__isNatIList.1(activate.1(y1)))
ISNATLIST.0(n__cons.0-1(x0, y1)) → AND.1-1(isNat.0(x0), n__isNatList.1(activate.1(y1)))
ISNATLIST.0(n__cons.0-1(n__and.1-0(x0, x1), y1)) → AND.1-1(isNat.0(and.1-0(activate.1(x0), x1)), n__isNatList.1(activate.1(y1)))
ISNATLIST.0(n__cons.1-1(n__and.0-1(x0, x1), y1)) → AND.1-1(isNat.1(and.0-1(activate.0(x0), x1)), n__isNatList.1(activate.1(y1)))
ISNATLIST.0(n__cons.1-1(x0, y1)) → AND.1-1(isNat.1(x0), n__isNatList.1(activate.1(y1)))
ISNATILIST.0(n__cons.0-1(n__and.1-0(x0, x1), y1)) → AND.1-1(isNat.0(and.1-0(activate.1(x0), x1)), n__isNatIList.1(activate.1(y1)))
ISNATILIST.0(n__cons.1-1(x0, y1)) → AND.1-1(isNat.1(x0), n__isNatIList.1(activate.1(y1)))
ISNATILIST.0(n__cons.0-1(n__0., y1)) → AND.1-1(isNat.0(0.), n__isNatIList.1(activate.1(y1)))
ISNATLIST.0(n__cons.0-1(n__0., y1)) → AND.1-1(isNat.0(0.), n__isNatList.1(activate.1(y1)))
ISNATLIST.0(n__cons.1-1(n__and.1-1(x0, x1), y1)) → AND.1-1(isNat.1(and.1-1(activate.1(x0), x1)), n__isNatList.1(activate.1(y1)))
The remaining pairs can at least be oriented weakly.
ACTIVATE.0(n__and.1-0(X1, X2)) → ACTIVATE.1(X1)
ISNAT.0(n__s.0(n__and.0-0(x0, x1))) → ISNAT.0(and.0-0(activate.0(x0), x1))
ISNAT.0(n__s.0(V1)) → ACTIVATE.0(V1)
ACTIVATE.1(n__isNat.0(X)) → ISNAT.0(X)
ISNATILIST.0(n__cons.1-0(x0, y1)) → AND.1-1(isNat.1(x0), n__isNatIList.0(activate.0(y1)))
ISNATILIST.0(n__cons.1-0(n__and.0-1(x0, x1), y1)) → AND.1-1(isNat.1(and.0-1(activate.0(x0), x1)), n__isNatIList.0(activate.0(y1)))
ISNAT.0(n__s.1(V1)) → ACTIVATE.1(V1)
ISNAT.0(n__s.0(n__s.1(x0))) → ISNAT.0(s.1(activate.1(x0)))
ISNATLIST.0(n__cons.0-0(n__and.1-0(x0, x1), y1)) → AND.1-1(isNat.0(and.1-0(activate.1(x0), x1)), n__isNatList.0(activate.0(y1)))
ACTIVATE.0(n__s.1(X)) → ACTIVATE.1(X)
ISNAT.0(n__s.0(n__and.1-0(x0, x1))) → ISNAT.0(and.1-0(activate.1(x0), x1))
ACTIVATE.0(n__and.1-0(n__isNat.0(x0), y1)) → AND.1-0(isNat.0(x0), y1)
ISNATLIST.0(n__cons.0-0(n__0., y1)) → AND.1-1(isNat.0(0.), n__isNatList.0(activate.0(y1)))
ISNATILIST.0(n__cons.0-0(n__0., y1)) → AND.1-1(isNat.0(0.), n__isNatIList.0(activate.0(y1)))
ACTIVATE.1(n__and.1-1(n__isNat.1(x0), y1)) → AND.1-1(isNat.1(x0), y1)
ACTIVATE.1(n__isNatList.0(X)) → ISNATLIST.0(X)
ISNAT.0(n__s.0(n__s.0(x0))) → ISNAT.0(s.0(activate.0(x0)))
ISNATLIST.0(n__cons.1-0(n__and.1-1(x0, x1), y1)) → AND.1-1(isNat.1(and.1-1(activate.1(x0), x1)), n__isNatList.0(activate.0(y1)))
ACTIVATE.1(n__and.1-1(X1, X2)) → ACTIVATE.1(X1)
ISNATLIST.0(n__cons.0-0(x0, y1)) → AND.1-1(isNat.0(x0), n__isNatList.0(activate.0(y1)))
ACTIVATE.0(n__and.1-0(n__and.1-1(x0, x1), y1)) → AND.1-0(and.1-1(activate.1(x0), x1), y1)
ACTIVATE.1(n__and.1-1(n__and.1-1(x0, x1), y1)) → AND.1-1(and.1-1(activate.1(x0), x1), y1)
ISNATILIST.0(n__cons.0-0(x0, y1)) → AND.1-1(isNat.0(x0), n__isNatIList.0(activate.0(y1)))
ACTIVATE.0(n__and.1-0(x0, y1)) → AND.1-0(x0, y1)
AND.1-1(tt., X) → ACTIVATE.1(X)
ACTIVATE.0(n__and.1-0(n__and.0-1(x0, x1), y1)) → AND.1-0(and.0-1(activate.0(x0), x1), y1)
ISNATILIST.0(n__cons.1-0(n__and.1-1(x0, x1), y1)) → AND.1-1(isNat.1(and.1-1(activate.1(x0), x1)), n__isNatIList.0(activate.0(y1)))
ACTIVATE.1(n__and.1-1(n__and.0-1(x0, x1), y1)) → AND.1-1(and.0-1(activate.0(x0), x1), y1)
ISNAT.0(n__s.0(x0)) → ISNAT.0(x0)
ACTIVATE.1(n__isNatIList.0(X)) → ISNATILIST.0(X)
ISNATLIST.0(n__cons.1-0(x0, y1)) → AND.1-1(isNat.1(x0), n__isNatList.0(activate.0(y1)))
ACTIVATE.1(n__and.1-1(n__isNat.0(x0), y1)) → AND.1-1(isNat.0(x0), y1)
ISNAT.0(n__s.0(n__length.0(x0))) → ISNAT.0(length.0(activate.0(x0)))
ACTIVATE.1(n__and.0-1(X1, X2)) → ACTIVATE.0(X1)
ISNATILIST.0(n__cons.0-0(n__and.1-0(x0, x1), y1)) → AND.1-1(isNat.0(and.1-0(activate.1(x0), x1)), n__isNatIList.0(activate.0(y1)))
ACTIVATE.0(n__and.1-0(n__isNat.1(x0), y1)) → AND.1-0(isNat.1(x0), y1)
ACTIVATE.0(n__s.0(X)) → ACTIVATE.0(X)
AND.1-0(tt., X) → ACTIVATE.0(X)
ISNATLIST.0(n__cons.1-0(n__and.0-1(x0, x1), y1)) → AND.1-1(isNat.1(and.0-1(activate.0(x0), x1)), n__isNatList.0(activate.0(y1)))
ISNAT.0(n__s.0(n__length.1(x0))) → ISNAT.0(length.1(activate.1(x0)))
ACTIVATE.1(n__and.1-1(x0, y1)) → AND.1-1(x0, y1)
Used ordering: Polynomial interpretation [25]:
POL(0.) = 0
POL(ACTIVATE.0(x1)) = x1
POL(ACTIVATE.1(x1)) = x1
POL(AND.1-0(x1, x2)) = x2
POL(AND.1-1(x1, x2)) = x2
POL(ISNAT.0(x1)) = x1
POL(ISNATILIST.0(x1)) = x1
POL(ISNATLIST.0(x1)) = x1
POL(U11.1-0(x1, x2)) = x2
POL(U11.1-1(x1, x2)) = 1
POL(U21.1(x1)) = 0
POL(U31.1-0-0-0(x1, x2, x3, x4)) = x2 + x3 + x4
POL(U31.1-0-0-1(x1, x2, x3, x4)) = x2 + x3
POL(U31.1-0-1-0(x1, x2, x3, x4)) = x2 + x3 + x4
POL(U31.1-0-1-1(x1, x2, x3, x4)) = x2
POL(U31.1-1-0-0(x1, x2, x3, x4)) = 1 + x3 + x4
POL(U31.1-1-0-1(x1, x2, x3, x4)) = 1 + x3
POL(U31.1-1-1-0(x1, x2, x3, x4)) = x4
POL(U31.1-1-1-1(x1, x2, x3, x4)) = 1 + x3
POL(activate.0(x1)) = x1
POL(activate.1(x1)) = x1
POL(and.0-0(x1, x2)) = 0
POL(and.0-1(x1, x2)) = x1
POL(and.1-0(x1, x2)) = x1 + x2
POL(and.1-1(x1, x2)) = x1 + x2
POL(cons.0-0(x1, x2)) = x1 + x2
POL(cons.0-1(x1, x2)) = 1 + x1
POL(cons.1-0(x1, x2)) = x2
POL(cons.1-1(x1, x2)) = 1
POL(isNat.0(x1)) = x1
POL(isNat.1(x1)) = 0
POL(isNatIList.0(x1)) = x1
POL(isNatIList.1(x1)) = 0
POL(isNatList.0(x1)) = x1
POL(isNatList.1(x1)) = 0
POL(length.0(x1)) = x1
POL(length.1(x1)) = 0
POL(n__0.) = 0
POL(n__and.0-0(x1, x2)) = 0
POL(n__and.0-1(x1, x2)) = x1
POL(n__and.1-0(x1, x2)) = x1 + x2
POL(n__and.1-1(x1, x2)) = x1 + x2
POL(n__cons.0-0(x1, x2)) = x1 + x2
POL(n__cons.0-1(x1, x2)) = 1 + x1
POL(n__cons.1-0(x1, x2)) = x2
POL(n__cons.1-1(x1, x2)) = 1
POL(n__isNat.0(x1)) = x1
POL(n__isNat.1(x1)) = 0
POL(n__isNatIList.0(x1)) = x1
POL(n__isNatIList.1(x1)) = 0
POL(n__isNatList.0(x1)) = x1
POL(n__isNatList.1(x1)) = 0
POL(n__length.0(x1)) = x1
POL(n__length.1(x1)) = 0
POL(n__nil.) = 0
POL(n__s.0(x1)) = x1
POL(n__s.1(x1)) = x1
POL(n__take.0-0(x1, x2)) = x1 + x2
POL(n__take.0-1(x1, x2)) = 1 + x1
POL(n__take.1-0(x1, x2)) = x2
POL(n__take.1-1(x1, x2)) = 0
POL(n__zeros.) = 0
POL(nil.) = 0
POL(s.0(x1)) = x1
POL(s.1(x1)) = x1
POL(take.0-0(x1, x2)) = x1 + x2
POL(take.0-1(x1, x2)) = 1 + x1
POL(take.1-0(x1, x2)) = x2
POL(take.1-1(x1, x2)) = 0
POL(tt.) = 0
POL(zeros.) = 0
The following usable rules [17] were oriented:
take.0-0(s.0(M), cons.0-0(N, IL)) → U31.1-0-0-0(and.1-1(isNatIList.0(activate.0(IL)), n__and.1-1(n__isNat.0(M), n__isNat.0(N))), activate.0(IL), M, N)
length.0(cons.1-0(N, L)) → U11.1-0(and.1-1(isNatList.0(activate.0(L)), n__isNat.1(N)), activate.0(L))
take.0-0(s.1(M), cons.0-1(N, IL)) → U31.1-1-1-0(and.1-1(isNatIList.1(activate.1(IL)), n__and.1-1(n__isNat.1(M), n__isNat.0(N))), activate.1(IL), M, N)
isNatIList.0(n__zeros.) → tt.
activate.0(n__cons.1-0(X1, X2)) → cons.1-0(activate.1(X1), X2)
isNatList.0(n__nil.) → tt.
take.0-0(s.0(M), cons.0-1(N, IL)) → U31.1-1-0-0(and.1-1(isNatIList.1(activate.1(IL)), n__and.1-1(n__isNat.0(M), n__isNat.0(N))), activate.1(IL), M, N)
U31.1-0-0-1(tt., IL, M, N) → cons.1-0(activate.1(N), n__take.0-0(activate.0(M), activate.0(IL)))
U11.1-0(tt., L) → s.0(length.0(activate.0(L)))
take.0-0(s.1(M), cons.1-1(N, IL)) → U31.1-1-1-1(and.1-1(isNatIList.1(activate.1(IL)), n__and.1-1(n__isNat.1(M), n__isNat.1(N))), activate.1(IL), M, N)
isNat.0(n__s.1(V1)) → isNat.1(activate.1(V1))
0. → n__0.
U31.1-0-1-0(tt., IL, M, N) → cons.0-0(activate.0(N), n__take.1-0(activate.1(M), activate.0(IL)))
take.0-1(0., IL) → U21.1(isNatIList.1(IL))
activate.1(X) → X
isNatIList.1(V) → isNatList.1(activate.1(V))
activate.0(n__nil.) → nil.
activate.0(X) → X
and.1-0(X1, X2) → n__and.1-0(X1, X2)
take.0-1(X1, X2) → n__take.0-1(X1, X2)
cons.1-1(X1, X2) → n__cons.1-1(X1, X2)
length.1(X) → n__length.1(X)
U31.1-1-1-1(tt., IL, M, N) → cons.1-0(activate.1(N), n__take.1-1(activate.1(M), activate.1(IL)))
isNatList.1(X) → n__isNatList.1(X)
U31.1-1-0-1(tt., IL, M, N) → cons.1-0(activate.1(N), n__take.0-1(activate.0(M), activate.1(IL)))
activate.0(n__cons.1-1(X1, X2)) → cons.1-1(activate.1(X1), X2)
length.0(cons.0-0(N, L)) → U11.1-0(and.1-1(isNatList.0(activate.0(L)), n__isNat.0(N)), activate.0(L))
U11.1-1(tt., L) → s.0(length.1(activate.1(L)))
isNatList.0(X) → n__isNatList.0(X)
activate.0(n__take.0-0(X1, X2)) → take.0-0(activate.0(X1), activate.0(X2))
take.0-0(s.1(M), cons.1-0(N, IL)) → U31.1-0-1-1(and.1-1(isNatIList.0(activate.0(IL)), n__and.1-1(n__isNat.1(M), n__isNat.1(N))), activate.0(IL), M, N)
nil. → n__nil.
isNat.0(n__0.) → tt.
take.0-0(s.1(M), cons.0-0(N, IL)) → U31.1-0-1-0(and.1-1(isNatIList.0(activate.0(IL)), n__and.1-1(n__isNat.1(M), n__isNat.0(N))), activate.0(IL), M, N)
take.0-0(s.0(M), cons.1-1(N, IL)) → U31.1-1-0-1(and.1-1(isNatIList.1(activate.1(IL)), n__and.1-1(n__isNat.0(M), n__isNat.1(N))), activate.1(IL), M, N)
activate.1(n__isNatList.1(X)) → isNatList.1(X)
activate.0(n__0.) → 0.
activate.1(n__and.0-1(X1, X2)) → and.0-1(activate.0(X1), X2)
activate.0(n__length.0(X)) → length.0(activate.0(X))
zeros. → cons.0-0(0., n__zeros.)
activate.0(n__s.1(X)) → s.1(activate.1(X))
isNat.0(X) → n__isNat.0(X)
cons.1-0(X1, X2) → n__cons.1-0(X1, X2)
and.1-1(X1, X2) → n__and.1-1(X1, X2)
isNatIList.0(X) → n__isNatIList.0(X)
activate.0(n__take.1-1(X1, X2)) → take.1-1(activate.1(X1), activate.1(X2))
activate.0(n__and.0-0(X1, X2)) → and.0-0(activate.0(X1), X2)
activate.0(n__take.0-1(X1, X2)) → take.0-1(activate.0(X1), activate.1(X2))
U21.1(tt.) → nil.
and.0-0(X1, X2) → n__and.0-0(X1, X2)
activate.0(n__s.0(X)) → s.0(activate.0(X))
activate.1(n__isNat.1(X)) → isNat.1(X)
length.0(X) → n__length.0(X)
activate.0(n__zeros.) → zeros.
and.1-0(tt., X) → activate.0(X)
activate.0(n__and.1-0(X1, X2)) → and.1-0(activate.1(X1), X2)
U31.1-0-1-1(tt., IL, M, N) → cons.1-0(activate.1(N), n__take.1-0(activate.1(M), activate.0(IL)))
take.0-0(s.0(M), cons.1-0(N, IL)) → U31.1-0-0-1(and.1-1(isNatIList.0(activate.0(IL)), n__and.1-1(n__isNat.0(M), n__isNat.1(N))), activate.0(IL), M, N)
U31.1-0-0-0(tt., IL, M, N) → cons.0-0(activate.0(N), n__take.0-0(activate.0(M), activate.0(IL)))
s.1(X) → n__s.1(X)
take.1-0(X1, X2) → n__take.1-0(X1, X2)
take.0-0(0., IL) → U21.1(isNatIList.0(IL))
activate.0(n__take.1-0(X1, X2)) → take.1-0(activate.1(X1), activate.0(X2))
length.0(nil.) → 0.
isNat.1(X) → n__isNat.1(X)
activate.0(n__cons.0-0(X1, X2)) → cons.0-0(activate.0(X1), X2)
take.1-1(X1, X2) → n__take.1-1(X1, X2)
activate.0(n__length.1(X)) → length.1(activate.1(X))
isNat.0(n__length.1(V1)) → isNatList.1(activate.1(V1))
and.0-1(X1, X2) → n__and.0-1(X1, X2)
activate.1(n__isNatIList.1(X)) → isNatIList.1(X)
isNatIList.1(X) → n__isNatIList.1(X)
length.0(cons.1-1(N, L)) → U11.1-1(and.1-1(isNatList.1(activate.1(L)), n__isNat.1(N)), activate.1(L))
zeros. → n__zeros.
take.0-0(X1, X2) → n__take.0-0(X1, X2)
U31.1-1-0-0(tt., IL, M, N) → cons.0-0(activate.0(N), n__take.0-1(activate.0(M), activate.1(IL)))
length.0(cons.0-1(N, L)) → U11.1-1(and.1-1(isNatList.1(activate.1(L)), n__isNat.0(N)), activate.1(L))
s.0(X) → n__s.0(X)
cons.0-0(X1, X2) → n__cons.0-0(X1, X2)
cons.0-1(X1, X2) → n__cons.0-1(X1, X2)
U31.1-1-1-0(tt., IL, M, N) → cons.0-0(activate.0(N), n__take.1-1(activate.1(M), activate.1(IL)))
activate.0(n__cons.0-1(X1, X2)) → cons.0-1(activate.0(X1), X2)
isNatList.0(n__take.1-1(V1, V2)) → and.1-1(isNat.1(activate.1(V1)), n__isNatIList.1(activate.1(V2)))
isNatIList.0(n__cons.1-1(V1, V2)) → and.1-1(isNat.1(activate.1(V1)), n__isNatIList.1(activate.1(V2)))
isNatList.0(n__take.0-0(V1, V2)) → and.1-1(isNat.0(activate.0(V1)), n__isNatIList.0(activate.0(V2)))
isNatList.0(n__take.1-0(V1, V2)) → and.1-1(isNat.1(activate.1(V1)), n__isNatIList.0(activate.0(V2)))
isNat.0(n__s.0(V1)) → isNat.0(activate.0(V1))
isNatIList.0(n__cons.0-0(V1, V2)) → and.1-1(isNat.0(activate.0(V1)), n__isNatIList.0(activate.0(V2)))
isNat.0(n__length.0(V1)) → isNatList.0(activate.0(V1))
isNatList.0(n__take.0-1(V1, V2)) → and.1-1(isNat.0(activate.0(V1)), n__isNatIList.1(activate.1(V2)))
activate.1(n__isNatList.0(X)) → isNatList.0(X)
and.1-1(tt., X) → activate.1(X)
isNatIList.0(n__cons.1-0(V1, V2)) → and.1-1(isNat.1(activate.1(V1)), n__isNatIList.0(activate.0(V2)))
isNatList.0(n__cons.0-1(V1, V2)) → and.1-1(isNat.0(activate.0(V1)), n__isNatList.1(activate.1(V2)))
isNatIList.0(V) → isNatList.0(activate.0(V))
activate.1(n__isNatIList.0(X)) → isNatIList.0(X)
activate.1(n__isNat.0(X)) → isNat.0(X)
isNatList.0(n__cons.1-0(V1, V2)) → and.1-1(isNat.1(activate.1(V1)), n__isNatList.0(activate.0(V2)))
isNatList.0(n__cons.0-0(V1, V2)) → and.1-1(isNat.0(activate.0(V1)), n__isNatList.0(activate.0(V2)))
isNatList.0(n__cons.1-1(V1, V2)) → and.1-1(isNat.1(activate.1(V1)), n__isNatList.1(activate.1(V2)))
activate.1(n__and.1-1(X1, X2)) → and.1-1(activate.1(X1), X2)
isNatIList.0(n__cons.0-1(V1, V2)) → and.1-1(isNat.0(activate.0(V1)), n__isNatIList.1(activate.1(V2)))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ SemLabProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ SemLabProof2
↳ QDPOrderProof
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
ISNATILIST.0(n__cons.0-0(x0, y1)) → AND.1-1(isNat.0(x0), n__isNatIList.0(activate.0(y1)))
ACTIVATE.0(n__and.1-0(x0, y1)) → AND.1-0(x0, y1)
ISNAT.0(n__s.0(n__and.0-0(x0, x1))) → ISNAT.0(and.0-0(activate.0(x0), x1))
ACTIVATE.0(n__and.1-0(X1, X2)) → ACTIVATE.1(X1)
ACTIVATE.0(n__and.1-0(n__and.0-1(x0, x1), y1)) → AND.1-0(and.0-1(activate.0(x0), x1), y1)
AND.1-1(tt., X) → ACTIVATE.1(X)
ISNATILIST.0(n__cons.1-0(n__and.1-1(x0, x1), y1)) → AND.1-1(isNat.1(and.1-1(activate.1(x0), x1)), n__isNatIList.0(activate.0(y1)))
ISNAT.0(n__s.0(V1)) → ACTIVATE.0(V1)
ACTIVATE.1(n__and.1-1(n__and.0-1(x0, x1), y1)) → AND.1-1(and.0-1(activate.0(x0), x1), y1)
ACTIVATE.1(n__isNat.0(X)) → ISNAT.0(X)
ISNATILIST.0(n__cons.1-0(x0, y1)) → AND.1-1(isNat.1(x0), n__isNatIList.0(activate.0(y1)))
ISNAT.0(n__s.0(x0)) → ISNAT.0(x0)
ISNATILIST.0(n__cons.1-0(n__and.0-1(x0, x1), y1)) → AND.1-1(isNat.1(and.0-1(activate.0(x0), x1)), n__isNatIList.0(activate.0(y1)))
ISNAT.0(n__s.1(V1)) → ACTIVATE.1(V1)
ISNAT.0(n__s.0(n__s.1(x0))) → ISNAT.0(s.1(activate.1(x0)))
ACTIVATE.1(n__isNatIList.0(X)) → ISNATILIST.0(X)
ISNATLIST.0(n__cons.1-0(x0, y1)) → AND.1-1(isNat.1(x0), n__isNatList.0(activate.0(y1)))
ISNATLIST.0(n__cons.0-0(n__and.1-0(x0, x1), y1)) → AND.1-1(isNat.0(and.1-0(activate.1(x0), x1)), n__isNatList.0(activate.0(y1)))
ISNAT.0(n__s.0(n__length.0(x0))) → ISNAT.0(length.0(activate.0(x0)))
ACTIVATE.1(n__and.1-1(n__isNat.0(x0), y1)) → AND.1-1(isNat.0(x0), y1)
ACTIVATE.0(n__s.1(X)) → ACTIVATE.1(X)
ACTIVATE.1(n__and.0-1(X1, X2)) → ACTIVATE.0(X1)
ACTIVATE.0(n__and.1-0(n__isNat.0(x0), y1)) → AND.1-0(isNat.0(x0), y1)
ISNAT.0(n__s.0(n__and.1-0(x0, x1))) → ISNAT.0(and.1-0(activate.1(x0), x1))
ACTIVATE.0(n__and.1-0(n__isNat.1(x0), y1)) → AND.1-0(isNat.1(x0), y1)
ISNATILIST.0(n__cons.0-0(n__and.1-0(x0, x1), y1)) → AND.1-1(isNat.0(and.1-0(activate.1(x0), x1)), n__isNatIList.0(activate.0(y1)))
ACTIVATE.0(n__s.0(X)) → ACTIVATE.0(X)
ISNATLIST.0(n__cons.0-0(n__0., y1)) → AND.1-1(isNat.0(0.), n__isNatList.0(activate.0(y1)))
ISNATLIST.0(n__cons.1-0(n__and.0-1(x0, x1), y1)) → AND.1-1(isNat.1(and.0-1(activate.0(x0), x1)), n__isNatList.0(activate.0(y1)))
AND.1-0(tt., X) → ACTIVATE.0(X)
ISNAT.0(n__s.0(n__length.1(x0))) → ISNAT.0(length.1(activate.1(x0)))
ISNATILIST.0(n__cons.0-0(n__0., y1)) → AND.1-1(isNat.0(0.), n__isNatIList.0(activate.0(y1)))
ACTIVATE.1(n__and.1-1(n__isNat.1(x0), y1)) → AND.1-1(isNat.1(x0), y1)
ACTIVATE.1(n__isNatList.0(X)) → ISNATLIST.0(X)
ISNAT.0(n__s.0(n__s.0(x0))) → ISNAT.0(s.0(activate.0(x0)))
ISNATLIST.0(n__cons.1-0(n__and.1-1(x0, x1), y1)) → AND.1-1(isNat.1(and.1-1(activate.1(x0), x1)), n__isNatList.0(activate.0(y1)))
ACTIVATE.1(n__and.1-1(X1, X2)) → ACTIVATE.1(X1)
ISNATLIST.0(n__cons.0-0(x0, y1)) → AND.1-1(isNat.0(x0), n__isNatList.0(activate.0(y1)))
ACTIVATE.0(n__and.1-0(n__and.1-1(x0, x1), y1)) → AND.1-0(and.1-1(activate.1(x0), x1), y1)
ACTIVATE.1(n__and.1-1(x0, y1)) → AND.1-1(x0, y1)
ACTIVATE.1(n__and.1-1(n__and.1-1(x0, x1), y1)) → AND.1-1(and.1-1(activate.1(x0), x1), y1)
The TRS R consists of the following rules:
activate.0(n__and.1-0(X1, X2)) → and.1-0(activate.1(X1), X2)
take.0-0(s.0(M), cons.1-0(N, IL)) → U31.1-0-0-1(and.1-1(isNatIList.0(activate.0(IL)), n__and.1-1(n__isNat.0(M), n__isNat.1(N))), activate.0(IL), M, N)
U31.1-0-1-1(tt., IL, M, N) → cons.1-0(activate.1(N), n__take.1-0(activate.1(M), activate.0(IL)))
and.1-0(tt., X) → activate.0(X)
activate.0(n__zeros.) → zeros.
and.0-0(X1, X2) → n__and.0-0(X1, X2)
activate.0(n__s.0(X)) → s.0(activate.0(X))
activate.0(n__take.0-1(X1, X2)) → take.0-1(activate.0(X1), activate.1(X2))
U21.1(tt.) → nil.
activate.1(n__isNat.1(X)) → isNat.1(X)
length.0(X) → n__length.0(X)
isNatList.0(n__take.0-0(V1, V2)) → and.1-1(isNat.0(activate.0(V1)), n__isNatIList.0(activate.0(V2)))
isNat.0(n__s.0(V1)) → isNat.0(activate.0(V1))
cons.1-0(X1, X2) → n__cons.1-0(X1, X2)
and.1-1(X1, X2) → n__and.1-1(X1, X2)
activate.0(n__s.1(X)) → s.1(activate.1(X))
isNat.0(X) → n__isNat.0(X)
activate.0(n__take.1-1(X1, X2)) → take.1-1(activate.1(X1), activate.1(X2))
activate.0(n__and.0-0(X1, X2)) → and.0-0(activate.0(X1), X2)
isNatList.0(n__cons.1-0(V1, V2)) → and.1-1(isNat.1(activate.1(V1)), n__isNatList.0(activate.0(V2)))
isNatIList.0(X) → n__isNatIList.0(X)
length.0(cons.0-1(N, L)) → U11.1-1(and.1-1(isNatList.1(activate.1(L)), n__isNat.0(N)), activate.1(L))
U31.1-1-0-0(tt., IL, M, N) → cons.0-0(activate.0(N), n__take.0-1(activate.0(M), activate.1(IL)))
cons.0-0(X1, X2) → n__cons.0-0(X1, X2)
s.0(X) → n__s.0(X)
U31.1-1-1-0(tt., IL, M, N) → cons.0-0(activate.0(N), n__take.1-1(activate.1(M), activate.1(IL)))
cons.0-1(X1, X2) → n__cons.0-1(X1, X2)
activate.1(n__isNatList.0(X)) → isNatList.0(X)
activate.0(n__cons.0-1(X1, X2)) → cons.0-1(activate.0(X1), X2)
and.0-1(X1, X2) → n__and.0-1(X1, X2)
isNat.0(n__length.1(V1)) → isNatList.1(activate.1(V1))
activate.1(n__isNatIList.1(X)) → isNatIList.1(X)
isNatIList.0(n__cons.1-1(V1, V2)) → and.1-1(isNat.1(activate.1(V1)), n__isNatIList.1(activate.1(V2)))
length.0(cons.1-1(N, L)) → U11.1-1(and.1-1(isNatList.1(activate.1(L)), n__isNat.1(N)), activate.1(L))
isNatIList.1(X) → n__isNatIList.1(X)
take.0-0(X1, X2) → n__take.0-0(X1, X2)
zeros. → n__zeros.
activate.0(n__take.1-0(X1, X2)) → take.1-0(activate.1(X1), activate.0(X2))
length.0(nil.) → 0.
isNat.1(X) → n__isNat.1(X)
activate.1(n__and.1-1(X1, X2)) → and.1-1(activate.1(X1), X2)
activate.0(n__cons.0-0(X1, X2)) → cons.0-0(activate.0(X1), X2)
isNatList.0(n__take.1-0(V1, V2)) → and.1-1(isNat.1(activate.1(V1)), n__isNatIList.0(activate.0(V2)))
take.1-1(X1, X2) → n__take.1-1(X1, X2)
activate.0(n__length.1(X)) → length.1(activate.1(X))
U31.1-0-0-0(tt., IL, M, N) → cons.0-0(activate.0(N), n__take.0-0(activate.0(M), activate.0(IL)))
isNat.0(n__length.0(V1)) → isNatList.0(activate.0(V1))
isNatIList.0(n__cons.1-0(V1, V2)) → and.1-1(isNat.1(activate.1(V1)), n__isNatIList.0(activate.0(V2)))
s.1(X) → n__s.1(X)
isNatList.0(n__cons.0-1(V1, V2)) → and.1-1(isNat.0(activate.0(V1)), n__isNatList.1(activate.1(V2)))
take.1-0(X1, X2) → n__take.1-0(X1, X2)
isNatIList.0(V) → isNatList.0(activate.0(V))
take.0-0(0., IL) → U21.1(isNatIList.0(IL))
activate.1(n__isNatIList.0(X)) → isNatIList.0(X)
isNatList.0(n__cons.0-0(V1, V2)) → and.1-1(isNat.0(activate.0(V1)), n__isNatList.0(activate.0(V2)))
isNatList.0(n__cons.1-1(V1, V2)) → and.1-1(isNat.1(activate.1(V1)), n__isNatList.1(activate.1(V2)))
activate.0(n__cons.1-1(X1, X2)) → cons.1-1(activate.1(X1), X2)
isNatList.0(n__take.1-1(V1, V2)) → and.1-1(isNat.1(activate.1(V1)), n__isNatIList.1(activate.1(V2)))
U31.1-1-0-1(tt., IL, M, N) → cons.1-0(activate.1(N), n__take.0-1(activate.0(M), activate.1(IL)))
isNatList.1(X) → n__isNatList.1(X)
U31.1-1-1-1(tt., IL, M, N) → cons.1-0(activate.1(N), n__take.1-1(activate.1(M), activate.1(IL)))
length.1(X) → n__length.1(X)
cons.1-1(X1, X2) → n__cons.1-1(X1, X2)
take.0-1(X1, X2) → n__take.0-1(X1, X2)
and.1-0(X1, X2) → n__and.1-0(X1, X2)
activate.0(X) → X
activate.0(n__nil.) → nil.
and.1-1(tt., X) → activate.1(X)
isNatIList.1(V) → isNatList.1(activate.1(V))
take.0-1(0., IL) → U21.1(isNatIList.1(IL))
activate.1(X) → X
0. → n__0.
U31.1-0-1-0(tt., IL, M, N) → cons.0-0(activate.0(N), n__take.1-0(activate.1(M), activate.0(IL)))
take.0-0(s.1(M), cons.1-1(N, IL)) → U31.1-1-1-1(and.1-1(isNatIList.1(activate.1(IL)), n__and.1-1(n__isNat.1(M), n__isNat.1(N))), activate.1(IL), M, N)
isNat.0(n__s.1(V1)) → isNat.1(activate.1(V1))
U31.1-0-0-1(tt., IL, M, N) → cons.1-0(activate.1(N), n__take.0-0(activate.0(M), activate.0(IL)))
U11.1-0(tt., L) → s.0(length.0(activate.0(L)))
isNatList.0(n__nil.) → tt.
take.0-0(s.0(M), cons.0-1(N, IL)) → U31.1-1-0-0(and.1-1(isNatIList.1(activate.1(IL)), n__and.1-1(n__isNat.0(M), n__isNat.0(N))), activate.1(IL), M, N)
isNatList.0(n__take.0-1(V1, V2)) → and.1-1(isNat.0(activate.0(V1)), n__isNatIList.1(activate.1(V2)))
activate.0(n__cons.1-0(X1, X2)) → cons.1-0(activate.1(X1), X2)
take.0-0(s.1(M), cons.0-1(N, IL)) → U31.1-1-1-0(and.1-1(isNatIList.1(activate.1(IL)), n__and.1-1(n__isNat.1(M), n__isNat.0(N))), activate.1(IL), M, N)
isNatIList.0(n__zeros.) → tt.
take.0-0(s.0(M), cons.0-0(N, IL)) → U31.1-0-0-0(and.1-1(isNatIList.0(activate.0(IL)), n__and.1-1(n__isNat.0(M), n__isNat.0(N))), activate.0(IL), M, N)
length.0(cons.1-0(N, L)) → U11.1-0(and.1-1(isNatList.0(activate.0(L)), n__isNat.1(N)), activate.0(L))
activate.0(n__length.0(X)) → length.0(activate.0(X))
activate.1(n__and.0-1(X1, X2)) → and.0-1(activate.0(X1), X2)
zeros. → cons.0-0(0., n__zeros.)
isNatIList.0(n__cons.0-0(V1, V2)) → and.1-1(isNat.0(activate.0(V1)), n__isNatIList.0(activate.0(V2)))
take.0-0(s.0(M), cons.1-1(N, IL)) → U31.1-1-0-1(and.1-1(isNatIList.1(activate.1(IL)), n__and.1-1(n__isNat.0(M), n__isNat.1(N))), activate.1(IL), M, N)
take.0-0(s.1(M), cons.0-0(N, IL)) → U31.1-0-1-0(and.1-1(isNatIList.0(activate.0(IL)), n__and.1-1(n__isNat.1(M), n__isNat.0(N))), activate.0(IL), M, N)
activate.0(n__0.) → 0.
activate.1(n__isNatList.1(X)) → isNatList.1(X)
take.0-0(s.1(M), cons.1-0(N, IL)) → U31.1-0-1-1(and.1-1(isNatIList.0(activate.0(IL)), n__and.1-1(n__isNat.1(M), n__isNat.1(N))), activate.0(IL), M, N)
activate.0(n__take.0-0(X1, X2)) → take.0-0(activate.0(X1), activate.0(X2))
isNat.0(n__0.) → tt.
nil. → n__nil.
U11.1-1(tt., L) → s.0(length.1(activate.1(L)))
length.0(cons.0-0(N, L)) → U11.1-0(and.1-1(isNatList.0(activate.0(L)), n__isNat.0(N)), activate.0(L))
activate.1(n__isNat.0(X)) → isNat.0(X)
isNatList.0(X) → n__isNatList.0(X)
isNatIList.0(n__cons.0-1(V1, V2)) → and.1-1(isNat.0(activate.0(V1)), n__isNatIList.1(activate.1(V2)))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].
The following pairs can be oriented strictly and are deleted.
ACTIVATE.0(n__and.1-0(n__and.0-1(x0, x1), y1)) → AND.1-0(and.0-1(activate.0(x0), x1), y1)
ACTIVATE.1(n__and.1-1(n__and.0-1(x0, x1), y1)) → AND.1-1(and.0-1(activate.0(x0), x1), y1)
ACTIVATE.1(n__and.0-1(X1, X2)) → ACTIVATE.0(X1)
The remaining pairs can at least be oriented weakly.
ISNATILIST.0(n__cons.0-0(x0, y1)) → AND.1-1(isNat.0(x0), n__isNatIList.0(activate.0(y1)))
ACTIVATE.0(n__and.1-0(x0, y1)) → AND.1-0(x0, y1)
ISNAT.0(n__s.0(n__and.0-0(x0, x1))) → ISNAT.0(and.0-0(activate.0(x0), x1))
ACTIVATE.0(n__and.1-0(X1, X2)) → ACTIVATE.1(X1)
AND.1-1(tt., X) → ACTIVATE.1(X)
ISNATILIST.0(n__cons.1-0(n__and.1-1(x0, x1), y1)) → AND.1-1(isNat.1(and.1-1(activate.1(x0), x1)), n__isNatIList.0(activate.0(y1)))
ISNAT.0(n__s.0(V1)) → ACTIVATE.0(V1)
ACTIVATE.1(n__isNat.0(X)) → ISNAT.0(X)
ISNATILIST.0(n__cons.1-0(x0, y1)) → AND.1-1(isNat.1(x0), n__isNatIList.0(activate.0(y1)))
ISNAT.0(n__s.0(x0)) → ISNAT.0(x0)
ISNATILIST.0(n__cons.1-0(n__and.0-1(x0, x1), y1)) → AND.1-1(isNat.1(and.0-1(activate.0(x0), x1)), n__isNatIList.0(activate.0(y1)))
ISNAT.0(n__s.1(V1)) → ACTIVATE.1(V1)
ISNAT.0(n__s.0(n__s.1(x0))) → ISNAT.0(s.1(activate.1(x0)))
ACTIVATE.1(n__isNatIList.0(X)) → ISNATILIST.0(X)
ISNATLIST.0(n__cons.1-0(x0, y1)) → AND.1-1(isNat.1(x0), n__isNatList.0(activate.0(y1)))
ISNATLIST.0(n__cons.0-0(n__and.1-0(x0, x1), y1)) → AND.1-1(isNat.0(and.1-0(activate.1(x0), x1)), n__isNatList.0(activate.0(y1)))
ISNAT.0(n__s.0(n__length.0(x0))) → ISNAT.0(length.0(activate.0(x0)))
ACTIVATE.1(n__and.1-1(n__isNat.0(x0), y1)) → AND.1-1(isNat.0(x0), y1)
ACTIVATE.0(n__s.1(X)) → ACTIVATE.1(X)
ACTIVATE.0(n__and.1-0(n__isNat.0(x0), y1)) → AND.1-0(isNat.0(x0), y1)
ISNAT.0(n__s.0(n__and.1-0(x0, x1))) → ISNAT.0(and.1-0(activate.1(x0), x1))
ACTIVATE.0(n__and.1-0(n__isNat.1(x0), y1)) → AND.1-0(isNat.1(x0), y1)
ISNATILIST.0(n__cons.0-0(n__and.1-0(x0, x1), y1)) → AND.1-1(isNat.0(and.1-0(activate.1(x0), x1)), n__isNatIList.0(activate.0(y1)))
ACTIVATE.0(n__s.0(X)) → ACTIVATE.0(X)
ISNATLIST.0(n__cons.0-0(n__0., y1)) → AND.1-1(isNat.0(0.), n__isNatList.0(activate.0(y1)))
ISNATLIST.0(n__cons.1-0(n__and.0-1(x0, x1), y1)) → AND.1-1(isNat.1(and.0-1(activate.0(x0), x1)), n__isNatList.0(activate.0(y1)))
AND.1-0(tt., X) → ACTIVATE.0(X)
ISNAT.0(n__s.0(n__length.1(x0))) → ISNAT.0(length.1(activate.1(x0)))
ISNATILIST.0(n__cons.0-0(n__0., y1)) → AND.1-1(isNat.0(0.), n__isNatIList.0(activate.0(y1)))
ACTIVATE.1(n__and.1-1(n__isNat.1(x0), y1)) → AND.1-1(isNat.1(x0), y1)
ACTIVATE.1(n__isNatList.0(X)) → ISNATLIST.0(X)
ISNAT.0(n__s.0(n__s.0(x0))) → ISNAT.0(s.0(activate.0(x0)))
ISNATLIST.0(n__cons.1-0(n__and.1-1(x0, x1), y1)) → AND.1-1(isNat.1(and.1-1(activate.1(x0), x1)), n__isNatList.0(activate.0(y1)))
ACTIVATE.1(n__and.1-1(X1, X2)) → ACTIVATE.1(X1)
ISNATLIST.0(n__cons.0-0(x0, y1)) → AND.1-1(isNat.0(x0), n__isNatList.0(activate.0(y1)))
ACTIVATE.0(n__and.1-0(n__and.1-1(x0, x1), y1)) → AND.1-0(and.1-1(activate.1(x0), x1), y1)
ACTIVATE.1(n__and.1-1(x0, y1)) → AND.1-1(x0, y1)
ACTIVATE.1(n__and.1-1(n__and.1-1(x0, x1), y1)) → AND.1-1(and.1-1(activate.1(x0), x1), y1)
Used ordering: Polynomial interpretation [25]:
POL(0.) = 0
POL(ACTIVATE.0(x1)) = x1
POL(ACTIVATE.1(x1)) = x1
POL(AND.1-0(x1, x2)) = x2
POL(AND.1-1(x1, x2)) = x2
POL(ISNAT.0(x1)) = x1
POL(ISNATILIST.0(x1)) = x1
POL(ISNATLIST.0(x1)) = x1
POL(U11.1-0(x1, x2)) = x2
POL(U11.1-1(x1, x2)) = 0
POL(U21.1(x1)) = 0
POL(U31.1-0-0-0(x1, x2, x3, x4)) = 1 + x2 + x3 + x4
POL(U31.1-0-0-1(x1, x2, x3, x4)) = 1 + x2 + x3
POL(U31.1-0-1-0(x1, x2, x3, x4)) = x2 + x3 + x4
POL(U31.1-0-1-1(x1, x2, x3, x4)) = 1 + x2
POL(U31.1-1-0-0(x1, x2, x3, x4)) = 1 + x3 + x4
POL(U31.1-1-0-1(x1, x2, x3, x4)) = 1 + x3
POL(U31.1-1-1-0(x1, x2, x3, x4)) = x2 + x3 + x4
POL(U31.1-1-1-1(x1, x2, x3, x4)) = x2
POL(activate.0(x1)) = x1
POL(activate.1(x1)) = x1
POL(and.0-0(x1, x2)) = 0
POL(and.0-1(x1, x2)) = 1 + x1 + x2
POL(and.1-0(x1, x2)) = x1 + x2
POL(and.1-1(x1, x2)) = x1 + x2
POL(cons.0-0(x1, x2)) = x1 + x2
POL(cons.0-1(x1, x2)) = 1 + x1 + x2
POL(cons.1-0(x1, x2)) = x2
POL(cons.1-1(x1, x2)) = x2
POL(isNat.0(x1)) = x1
POL(isNat.1(x1)) = 0
POL(isNatIList.0(x1)) = x1
POL(isNatIList.1(x1)) = 0
POL(isNatList.0(x1)) = x1
POL(isNatList.1(x1)) = 0
POL(length.0(x1)) = x1
POL(length.1(x1)) = 0
POL(n__0.) = 0
POL(n__and.0-0(x1, x2)) = 0
POL(n__and.0-1(x1, x2)) = 1 + x1 + x2
POL(n__and.1-0(x1, x2)) = x1 + x2
POL(n__and.1-1(x1, x2)) = x1 + x2
POL(n__cons.0-0(x1, x2)) = x1 + x2
POL(n__cons.0-1(x1, x2)) = 1 + x1 + x2
POL(n__cons.1-0(x1, x2)) = x2
POL(n__cons.1-1(x1, x2)) = x2
POL(n__isNat.0(x1)) = x1
POL(n__isNat.1(x1)) = 0
POL(n__isNatIList.0(x1)) = x1
POL(n__isNatIList.1(x1)) = 0
POL(n__isNatList.0(x1)) = x1
POL(n__isNatList.1(x1)) = 0
POL(n__length.0(x1)) = x1
POL(n__length.1(x1)) = 0
POL(n__nil.) = 0
POL(n__s.0(x1)) = x1
POL(n__s.1(x1)) = x1
POL(n__take.0-0(x1, x2)) = 1 + x1 + x2
POL(n__take.0-1(x1, x2)) = x1
POL(n__take.1-0(x1, x2)) = x2
POL(n__take.1-1(x1, x2)) = x2
POL(n__zeros.) = 0
POL(nil.) = 0
POL(s.0(x1)) = x1
POL(s.1(x1)) = x1
POL(take.0-0(x1, x2)) = 1 + x1 + x2
POL(take.0-1(x1, x2)) = x1
POL(take.1-0(x1, x2)) = x2
POL(take.1-1(x1, x2)) = x2
POL(tt.) = 0
POL(zeros.) = 0
The following usable rules [17] were oriented:
take.0-0(s.0(M), cons.0-0(N, IL)) → U31.1-0-0-0(and.1-1(isNatIList.0(activate.0(IL)), n__and.1-1(n__isNat.0(M), n__isNat.0(N))), activate.0(IL), M, N)
length.0(cons.1-0(N, L)) → U11.1-0(and.1-1(isNatList.0(activate.0(L)), n__isNat.1(N)), activate.0(L))
take.0-0(s.1(M), cons.0-1(N, IL)) → U31.1-1-1-0(and.1-1(isNatIList.1(activate.1(IL)), n__and.1-1(n__isNat.1(M), n__isNat.0(N))), activate.1(IL), M, N)
isNatIList.0(n__zeros.) → tt.
activate.0(n__cons.1-0(X1, X2)) → cons.1-0(activate.1(X1), X2)
isNatList.0(n__nil.) → tt.
take.0-0(s.0(M), cons.0-1(N, IL)) → U31.1-1-0-0(and.1-1(isNatIList.1(activate.1(IL)), n__and.1-1(n__isNat.0(M), n__isNat.0(N))), activate.1(IL), M, N)
U31.1-0-0-1(tt., IL, M, N) → cons.1-0(activate.1(N), n__take.0-0(activate.0(M), activate.0(IL)))
U11.1-0(tt., L) → s.0(length.0(activate.0(L)))
take.0-0(s.1(M), cons.1-1(N, IL)) → U31.1-1-1-1(and.1-1(isNatIList.1(activate.1(IL)), n__and.1-1(n__isNat.1(M), n__isNat.1(N))), activate.1(IL), M, N)
isNat.0(n__s.1(V1)) → isNat.1(activate.1(V1))
0. → n__0.
U31.1-0-1-0(tt., IL, M, N) → cons.0-0(activate.0(N), n__take.1-0(activate.1(M), activate.0(IL)))
take.0-1(0., IL) → U21.1(isNatIList.1(IL))
activate.1(X) → X
isNatIList.1(V) → isNatList.1(activate.1(V))
activate.0(n__nil.) → nil.
activate.0(X) → X
and.1-0(X1, X2) → n__and.1-0(X1, X2)
take.0-1(X1, X2) → n__take.0-1(X1, X2)
cons.1-1(X1, X2) → n__cons.1-1(X1, X2)
length.1(X) → n__length.1(X)
U31.1-1-1-1(tt., IL, M, N) → cons.1-0(activate.1(N), n__take.1-1(activate.1(M), activate.1(IL)))
isNatList.1(X) → n__isNatList.1(X)
U31.1-1-0-1(tt., IL, M, N) → cons.1-0(activate.1(N), n__take.0-1(activate.0(M), activate.1(IL)))
activate.0(n__cons.1-1(X1, X2)) → cons.1-1(activate.1(X1), X2)
length.0(cons.0-0(N, L)) → U11.1-0(and.1-1(isNatList.0(activate.0(L)), n__isNat.0(N)), activate.0(L))
U11.1-1(tt., L) → s.0(length.1(activate.1(L)))
isNatList.0(X) → n__isNatList.0(X)
activate.0(n__take.0-0(X1, X2)) → take.0-0(activate.0(X1), activate.0(X2))
take.0-0(s.1(M), cons.1-0(N, IL)) → U31.1-0-1-1(and.1-1(isNatIList.0(activate.0(IL)), n__and.1-1(n__isNat.1(M), n__isNat.1(N))), activate.0(IL), M, N)
nil. → n__nil.
isNat.0(n__0.) → tt.
take.0-0(s.1(M), cons.0-0(N, IL)) → U31.1-0-1-0(and.1-1(isNatIList.0(activate.0(IL)), n__and.1-1(n__isNat.1(M), n__isNat.0(N))), activate.0(IL), M, N)
take.0-0(s.0(M), cons.1-1(N, IL)) → U31.1-1-0-1(and.1-1(isNatIList.1(activate.1(IL)), n__and.1-1(n__isNat.0(M), n__isNat.1(N))), activate.1(IL), M, N)
activate.1(n__isNatList.1(X)) → isNatList.1(X)
activate.0(n__0.) → 0.
activate.1(n__and.0-1(X1, X2)) → and.0-1(activate.0(X1), X2)
activate.0(n__length.0(X)) → length.0(activate.0(X))
zeros. → cons.0-0(0., n__zeros.)
activate.0(n__s.1(X)) → s.1(activate.1(X))
isNat.0(X) → n__isNat.0(X)
cons.1-0(X1, X2) → n__cons.1-0(X1, X2)
and.1-1(X1, X2) → n__and.1-1(X1, X2)
isNatIList.0(X) → n__isNatIList.0(X)
activate.0(n__take.1-1(X1, X2)) → take.1-1(activate.1(X1), activate.1(X2))
activate.0(n__and.0-0(X1, X2)) → and.0-0(activate.0(X1), X2)
activate.0(n__take.0-1(X1, X2)) → take.0-1(activate.0(X1), activate.1(X2))
U21.1(tt.) → nil.
and.0-0(X1, X2) → n__and.0-0(X1, X2)
activate.0(n__s.0(X)) → s.0(activate.0(X))
activate.1(n__isNat.1(X)) → isNat.1(X)
length.0(X) → n__length.0(X)
activate.0(n__zeros.) → zeros.
and.1-0(tt., X) → activate.0(X)
activate.0(n__and.1-0(X1, X2)) → and.1-0(activate.1(X1), X2)
U31.1-0-1-1(tt., IL, M, N) → cons.1-0(activate.1(N), n__take.1-0(activate.1(M), activate.0(IL)))
take.0-0(s.0(M), cons.1-0(N, IL)) → U31.1-0-0-1(and.1-1(isNatIList.0(activate.0(IL)), n__and.1-1(n__isNat.0(M), n__isNat.1(N))), activate.0(IL), M, N)
U31.1-0-0-0(tt., IL, M, N) → cons.0-0(activate.0(N), n__take.0-0(activate.0(M), activate.0(IL)))
s.1(X) → n__s.1(X)
take.1-0(X1, X2) → n__take.1-0(X1, X2)
take.0-0(0., IL) → U21.1(isNatIList.0(IL))
activate.0(n__take.1-0(X1, X2)) → take.1-0(activate.1(X1), activate.0(X2))
length.0(nil.) → 0.
isNat.1(X) → n__isNat.1(X)
activate.0(n__cons.0-0(X1, X2)) → cons.0-0(activate.0(X1), X2)
take.1-1(X1, X2) → n__take.1-1(X1, X2)
activate.0(n__length.1(X)) → length.1(activate.1(X))
isNat.0(n__length.1(V1)) → isNatList.1(activate.1(V1))
and.0-1(X1, X2) → n__and.0-1(X1, X2)
activate.1(n__isNatIList.1(X)) → isNatIList.1(X)
isNatIList.1(X) → n__isNatIList.1(X)
length.0(cons.1-1(N, L)) → U11.1-1(and.1-1(isNatList.1(activate.1(L)), n__isNat.1(N)), activate.1(L))
zeros. → n__zeros.
take.0-0(X1, X2) → n__take.0-0(X1, X2)
U31.1-1-0-0(tt., IL, M, N) → cons.0-0(activate.0(N), n__take.0-1(activate.0(M), activate.1(IL)))
length.0(cons.0-1(N, L)) → U11.1-1(and.1-1(isNatList.1(activate.1(L)), n__isNat.0(N)), activate.1(L))
s.0(X) → n__s.0(X)
cons.0-0(X1, X2) → n__cons.0-0(X1, X2)
cons.0-1(X1, X2) → n__cons.0-1(X1, X2)
U31.1-1-1-0(tt., IL, M, N) → cons.0-0(activate.0(N), n__take.1-1(activate.1(M), activate.1(IL)))
activate.0(n__cons.0-1(X1, X2)) → cons.0-1(activate.0(X1), X2)
isNatList.0(n__take.1-1(V1, V2)) → and.1-1(isNat.1(activate.1(V1)), n__isNatIList.1(activate.1(V2)))
isNatIList.0(n__cons.1-1(V1, V2)) → and.1-1(isNat.1(activate.1(V1)), n__isNatIList.1(activate.1(V2)))
isNatList.0(n__take.0-0(V1, V2)) → and.1-1(isNat.0(activate.0(V1)), n__isNatIList.0(activate.0(V2)))
isNatList.0(n__take.1-0(V1, V2)) → and.1-1(isNat.1(activate.1(V1)), n__isNatIList.0(activate.0(V2)))
isNat.0(n__s.0(V1)) → isNat.0(activate.0(V1))
isNatIList.0(n__cons.0-0(V1, V2)) → and.1-1(isNat.0(activate.0(V1)), n__isNatIList.0(activate.0(V2)))
isNat.0(n__length.0(V1)) → isNatList.0(activate.0(V1))
isNatList.0(n__take.0-1(V1, V2)) → and.1-1(isNat.0(activate.0(V1)), n__isNatIList.1(activate.1(V2)))
activate.1(n__isNatList.0(X)) → isNatList.0(X)
and.1-1(tt., X) → activate.1(X)
isNatIList.0(n__cons.1-0(V1, V2)) → and.1-1(isNat.1(activate.1(V1)), n__isNatIList.0(activate.0(V2)))
isNatList.0(n__cons.0-1(V1, V2)) → and.1-1(isNat.0(activate.0(V1)), n__isNatList.1(activate.1(V2)))
isNatIList.0(V) → isNatList.0(activate.0(V))
activate.1(n__isNatIList.0(X)) → isNatIList.0(X)
activate.1(n__isNat.0(X)) → isNat.0(X)
isNatList.0(n__cons.1-0(V1, V2)) → and.1-1(isNat.1(activate.1(V1)), n__isNatList.0(activate.0(V2)))
isNatList.0(n__cons.0-0(V1, V2)) → and.1-1(isNat.0(activate.0(V1)), n__isNatList.0(activate.0(V2)))
isNatList.0(n__cons.1-1(V1, V2)) → and.1-1(isNat.1(activate.1(V1)), n__isNatList.1(activate.1(V2)))
activate.1(n__and.1-1(X1, X2)) → and.1-1(activate.1(X1), X2)
isNatIList.0(n__cons.0-1(V1, V2)) → and.1-1(isNat.0(activate.0(V1)), n__isNatIList.1(activate.1(V2)))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ SemLabProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ SemLabProof2
↳ QDPOrderProof
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
ACTIVATE.0(n__and.1-0(x0, y1)) → AND.1-0(x0, y1)
ISNATILIST.0(n__cons.0-0(x0, y1)) → AND.1-1(isNat.0(x0), n__isNatIList.0(activate.0(y1)))
ACTIVATE.0(n__and.1-0(X1, X2)) → ACTIVATE.1(X1)
ISNAT.0(n__s.0(n__and.0-0(x0, x1))) → ISNAT.0(and.0-0(activate.0(x0), x1))
AND.1-1(tt., X) → ACTIVATE.1(X)
ISNAT.0(n__s.0(V1)) → ACTIVATE.0(V1)
ISNATILIST.0(n__cons.1-0(n__and.1-1(x0, x1), y1)) → AND.1-1(isNat.1(and.1-1(activate.1(x0), x1)), n__isNatIList.0(activate.0(y1)))
ACTIVATE.1(n__isNat.0(X)) → ISNAT.0(X)
ISNATILIST.0(n__cons.1-0(x0, y1)) → AND.1-1(isNat.1(x0), n__isNatIList.0(activate.0(y1)))
ISNATILIST.0(n__cons.1-0(n__and.0-1(x0, x1), y1)) → AND.1-1(isNat.1(and.0-1(activate.0(x0), x1)), n__isNatIList.0(activate.0(y1)))
ISNAT.0(n__s.0(x0)) → ISNAT.0(x0)
ISNAT.0(n__s.1(V1)) → ACTIVATE.1(V1)
ISNAT.0(n__s.0(n__s.1(x0))) → ISNAT.0(s.1(activate.1(x0)))
ACTIVATE.1(n__isNatIList.0(X)) → ISNATILIST.0(X)
ISNATLIST.0(n__cons.1-0(x0, y1)) → AND.1-1(isNat.1(x0), n__isNatList.0(activate.0(y1)))
ISNATLIST.0(n__cons.0-0(n__and.1-0(x0, x1), y1)) → AND.1-1(isNat.0(and.1-0(activate.1(x0), x1)), n__isNatList.0(activate.0(y1)))
ISNAT.0(n__s.0(n__length.0(x0))) → ISNAT.0(length.0(activate.0(x0)))
ACTIVATE.1(n__and.1-1(n__isNat.0(x0), y1)) → AND.1-1(isNat.0(x0), y1)
ACTIVATE.0(n__s.1(X)) → ACTIVATE.1(X)
ACTIVATE.0(n__and.1-0(n__isNat.0(x0), y1)) → AND.1-0(isNat.0(x0), y1)
ISNAT.0(n__s.0(n__and.1-0(x0, x1))) → ISNAT.0(and.1-0(activate.1(x0), x1))
ACTIVATE.0(n__and.1-0(n__isNat.1(x0), y1)) → AND.1-0(isNat.1(x0), y1)
ISNATILIST.0(n__cons.0-0(n__and.1-0(x0, x1), y1)) → AND.1-1(isNat.0(and.1-0(activate.1(x0), x1)), n__isNatIList.0(activate.0(y1)))
ACTIVATE.0(n__s.0(X)) → ACTIVATE.0(X)
ISNATLIST.0(n__cons.0-0(n__0., y1)) → AND.1-1(isNat.0(0.), n__isNatList.0(activate.0(y1)))
AND.1-0(tt., X) → ACTIVATE.0(X)
ISNATLIST.0(n__cons.1-0(n__and.0-1(x0, x1), y1)) → AND.1-1(isNat.1(and.0-1(activate.0(x0), x1)), n__isNatList.0(activate.0(y1)))
ISNATILIST.0(n__cons.0-0(n__0., y1)) → AND.1-1(isNat.0(0.), n__isNatIList.0(activate.0(y1)))
ISNAT.0(n__s.0(n__length.1(x0))) → ISNAT.0(length.1(activate.1(x0)))
ACTIVATE.1(n__isNatList.0(X)) → ISNATLIST.0(X)
ACTIVATE.1(n__and.1-1(n__isNat.1(x0), y1)) → AND.1-1(isNat.1(x0), y1)
ISNAT.0(n__s.0(n__s.0(x0))) → ISNAT.0(s.0(activate.0(x0)))
ISNATLIST.0(n__cons.1-0(n__and.1-1(x0, x1), y1)) → AND.1-1(isNat.1(and.1-1(activate.1(x0), x1)), n__isNatList.0(activate.0(y1)))
ACTIVATE.1(n__and.1-1(X1, X2)) → ACTIVATE.1(X1)
ACTIVATE.0(n__and.1-0(n__and.1-1(x0, x1), y1)) → AND.1-0(and.1-1(activate.1(x0), x1), y1)
ISNATLIST.0(n__cons.0-0(x0, y1)) → AND.1-1(isNat.0(x0), n__isNatList.0(activate.0(y1)))
ACTIVATE.1(n__and.1-1(x0, y1)) → AND.1-1(x0, y1)
ACTIVATE.1(n__and.1-1(n__and.1-1(x0, x1), y1)) → AND.1-1(and.1-1(activate.1(x0), x1), y1)
The TRS R consists of the following rules:
activate.0(n__and.1-0(X1, X2)) → and.1-0(activate.1(X1), X2)
take.0-0(s.0(M), cons.1-0(N, IL)) → U31.1-0-0-1(and.1-1(isNatIList.0(activate.0(IL)), n__and.1-1(n__isNat.0(M), n__isNat.1(N))), activate.0(IL), M, N)
U31.1-0-1-1(tt., IL, M, N) → cons.1-0(activate.1(N), n__take.1-0(activate.1(M), activate.0(IL)))
and.1-0(tt., X) → activate.0(X)
activate.0(n__zeros.) → zeros.
and.0-0(X1, X2) → n__and.0-0(X1, X2)
activate.0(n__s.0(X)) → s.0(activate.0(X))
activate.0(n__take.0-1(X1, X2)) → take.0-1(activate.0(X1), activate.1(X2))
U21.1(tt.) → nil.
activate.1(n__isNat.1(X)) → isNat.1(X)
length.0(X) → n__length.0(X)
isNatList.0(n__take.0-0(V1, V2)) → and.1-1(isNat.0(activate.0(V1)), n__isNatIList.0(activate.0(V2)))
isNat.0(n__s.0(V1)) → isNat.0(activate.0(V1))
cons.1-0(X1, X2) → n__cons.1-0(X1, X2)
and.1-1(X1, X2) → n__and.1-1(X1, X2)
activate.0(n__s.1(X)) → s.1(activate.1(X))
isNat.0(X) → n__isNat.0(X)
activate.0(n__take.1-1(X1, X2)) → take.1-1(activate.1(X1), activate.1(X2))
activate.0(n__and.0-0(X1, X2)) → and.0-0(activate.0(X1), X2)
isNatList.0(n__cons.1-0(V1, V2)) → and.1-1(isNat.1(activate.1(V1)), n__isNatList.0(activate.0(V2)))
isNatIList.0(X) → n__isNatIList.0(X)
length.0(cons.0-1(N, L)) → U11.1-1(and.1-1(isNatList.1(activate.1(L)), n__isNat.0(N)), activate.1(L))
U31.1-1-0-0(tt., IL, M, N) → cons.0-0(activate.0(N), n__take.0-1(activate.0(M), activate.1(IL)))
cons.0-0(X1, X2) → n__cons.0-0(X1, X2)
s.0(X) → n__s.0(X)
U31.1-1-1-0(tt., IL, M, N) → cons.0-0(activate.0(N), n__take.1-1(activate.1(M), activate.1(IL)))
cons.0-1(X1, X2) → n__cons.0-1(X1, X2)
activate.1(n__isNatList.0(X)) → isNatList.0(X)
activate.0(n__cons.0-1(X1, X2)) → cons.0-1(activate.0(X1), X2)
and.0-1(X1, X2) → n__and.0-1(X1, X2)
isNat.0(n__length.1(V1)) → isNatList.1(activate.1(V1))
activate.1(n__isNatIList.1(X)) → isNatIList.1(X)
isNatIList.0(n__cons.1-1(V1, V2)) → and.1-1(isNat.1(activate.1(V1)), n__isNatIList.1(activate.1(V2)))
length.0(cons.1-1(N, L)) → U11.1-1(and.1-1(isNatList.1(activate.1(L)), n__isNat.1(N)), activate.1(L))
isNatIList.1(X) → n__isNatIList.1(X)
take.0-0(X1, X2) → n__take.0-0(X1, X2)
zeros. → n__zeros.
activate.0(n__take.1-0(X1, X2)) → take.1-0(activate.1(X1), activate.0(X2))
length.0(nil.) → 0.
isNat.1(X) → n__isNat.1(X)
activate.1(n__and.1-1(X1, X2)) → and.1-1(activate.1(X1), X2)
activate.0(n__cons.0-0(X1, X2)) → cons.0-0(activate.0(X1), X2)
isNatList.0(n__take.1-0(V1, V2)) → and.1-1(isNat.1(activate.1(V1)), n__isNatIList.0(activate.0(V2)))
take.1-1(X1, X2) → n__take.1-1(X1, X2)
activate.0(n__length.1(X)) → length.1(activate.1(X))
U31.1-0-0-0(tt., IL, M, N) → cons.0-0(activate.0(N), n__take.0-0(activate.0(M), activate.0(IL)))
isNat.0(n__length.0(V1)) → isNatList.0(activate.0(V1))
isNatIList.0(n__cons.1-0(V1, V2)) → and.1-1(isNat.1(activate.1(V1)), n__isNatIList.0(activate.0(V2)))
s.1(X) → n__s.1(X)
isNatList.0(n__cons.0-1(V1, V2)) → and.1-1(isNat.0(activate.0(V1)), n__isNatList.1(activate.1(V2)))
take.1-0(X1, X2) → n__take.1-0(X1, X2)
isNatIList.0(V) → isNatList.0(activate.0(V))
take.0-0(0., IL) → U21.1(isNatIList.0(IL))
activate.1(n__isNatIList.0(X)) → isNatIList.0(X)
isNatList.0(n__cons.0-0(V1, V2)) → and.1-1(isNat.0(activate.0(V1)), n__isNatList.0(activate.0(V2)))
isNatList.0(n__cons.1-1(V1, V2)) → and.1-1(isNat.1(activate.1(V1)), n__isNatList.1(activate.1(V2)))
activate.0(n__cons.1-1(X1, X2)) → cons.1-1(activate.1(X1), X2)
isNatList.0(n__take.1-1(V1, V2)) → and.1-1(isNat.1(activate.1(V1)), n__isNatIList.1(activate.1(V2)))
U31.1-1-0-1(tt., IL, M, N) → cons.1-0(activate.1(N), n__take.0-1(activate.0(M), activate.1(IL)))
isNatList.1(X) → n__isNatList.1(X)
U31.1-1-1-1(tt., IL, M, N) → cons.1-0(activate.1(N), n__take.1-1(activate.1(M), activate.1(IL)))
length.1(X) → n__length.1(X)
cons.1-1(X1, X2) → n__cons.1-1(X1, X2)
take.0-1(X1, X2) → n__take.0-1(X1, X2)
and.1-0(X1, X2) → n__and.1-0(X1, X2)
activate.0(X) → X
activate.0(n__nil.) → nil.
and.1-1(tt., X) → activate.1(X)
isNatIList.1(V) → isNatList.1(activate.1(V))
take.0-1(0., IL) → U21.1(isNatIList.1(IL))
activate.1(X) → X
0. → n__0.
U31.1-0-1-0(tt., IL, M, N) → cons.0-0(activate.0(N), n__take.1-0(activate.1(M), activate.0(IL)))
take.0-0(s.1(M), cons.1-1(N, IL)) → U31.1-1-1-1(and.1-1(isNatIList.1(activate.1(IL)), n__and.1-1(n__isNat.1(M), n__isNat.1(N))), activate.1(IL), M, N)
isNat.0(n__s.1(V1)) → isNat.1(activate.1(V1))
U31.1-0-0-1(tt., IL, M, N) → cons.1-0(activate.1(N), n__take.0-0(activate.0(M), activate.0(IL)))
U11.1-0(tt., L) → s.0(length.0(activate.0(L)))
isNatList.0(n__nil.) → tt.
take.0-0(s.0(M), cons.0-1(N, IL)) → U31.1-1-0-0(and.1-1(isNatIList.1(activate.1(IL)), n__and.1-1(n__isNat.0(M), n__isNat.0(N))), activate.1(IL), M, N)
isNatList.0(n__take.0-1(V1, V2)) → and.1-1(isNat.0(activate.0(V1)), n__isNatIList.1(activate.1(V2)))
activate.0(n__cons.1-0(X1, X2)) → cons.1-0(activate.1(X1), X2)
take.0-0(s.1(M), cons.0-1(N, IL)) → U31.1-1-1-0(and.1-1(isNatIList.1(activate.1(IL)), n__and.1-1(n__isNat.1(M), n__isNat.0(N))), activate.1(IL), M, N)
isNatIList.0(n__zeros.) → tt.
take.0-0(s.0(M), cons.0-0(N, IL)) → U31.1-0-0-0(and.1-1(isNatIList.0(activate.0(IL)), n__and.1-1(n__isNat.0(M), n__isNat.0(N))), activate.0(IL), M, N)
length.0(cons.1-0(N, L)) → U11.1-0(and.1-1(isNatList.0(activate.0(L)), n__isNat.1(N)), activate.0(L))
activate.0(n__length.0(X)) → length.0(activate.0(X))
activate.1(n__and.0-1(X1, X2)) → and.0-1(activate.0(X1), X2)
zeros. → cons.0-0(0., n__zeros.)
isNatIList.0(n__cons.0-0(V1, V2)) → and.1-1(isNat.0(activate.0(V1)), n__isNatIList.0(activate.0(V2)))
take.0-0(s.0(M), cons.1-1(N, IL)) → U31.1-1-0-1(and.1-1(isNatIList.1(activate.1(IL)), n__and.1-1(n__isNat.0(M), n__isNat.1(N))), activate.1(IL), M, N)
take.0-0(s.1(M), cons.0-0(N, IL)) → U31.1-0-1-0(and.1-1(isNatIList.0(activate.0(IL)), n__and.1-1(n__isNat.1(M), n__isNat.0(N))), activate.0(IL), M, N)
activate.0(n__0.) → 0.
activate.1(n__isNatList.1(X)) → isNatList.1(X)
take.0-0(s.1(M), cons.1-0(N, IL)) → U31.1-0-1-1(and.1-1(isNatIList.0(activate.0(IL)), n__and.1-1(n__isNat.1(M), n__isNat.1(N))), activate.0(IL), M, N)
activate.0(n__take.0-0(X1, X2)) → take.0-0(activate.0(X1), activate.0(X2))
isNat.0(n__0.) → tt.
nil. → n__nil.
U11.1-1(tt., L) → s.0(length.1(activate.1(L)))
length.0(cons.0-0(N, L)) → U11.1-0(and.1-1(isNatList.0(activate.0(L)), n__isNat.0(N)), activate.0(L))
activate.1(n__isNat.0(X)) → isNat.0(X)
isNatList.0(X) → n__isNatList.0(X)
isNatIList.0(n__cons.0-1(V1, V2)) → and.1-1(isNat.0(activate.0(V1)), n__isNatIList.1(activate.1(V2)))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].
The following pairs can be oriented strictly and are deleted.
ACTIVATE.0(n__and.1-0(x0, y1)) → AND.1-0(x0, y1)
ISNAT.0(n__s.0(V1)) → ACTIVATE.0(V1)
ISNATILIST.0(n__cons.1-0(n__and.1-1(x0, x1), y1)) → AND.1-1(isNat.1(and.1-1(activate.1(x0), x1)), n__isNatIList.0(activate.0(y1)))
ISNATILIST.0(n__cons.1-0(x0, y1)) → AND.1-1(isNat.1(x0), n__isNatIList.0(activate.0(y1)))
ISNATILIST.0(n__cons.1-0(n__and.0-1(x0, x1), y1)) → AND.1-1(isNat.1(and.0-1(activate.0(x0), x1)), n__isNatIList.0(activate.0(y1)))
ISNAT.0(n__s.1(V1)) → ACTIVATE.1(V1)
ISNATLIST.0(n__cons.1-0(x0, y1)) → AND.1-1(isNat.1(x0), n__isNatList.0(activate.0(y1)))
ISNATLIST.0(n__cons.0-0(n__and.1-0(x0, x1), y1)) → AND.1-1(isNat.0(and.1-0(activate.1(x0), x1)), n__isNatList.0(activate.0(y1)))
ACTIVATE.0(n__and.1-0(n__isNat.0(x0), y1)) → AND.1-0(isNat.0(x0), y1)
ACTIVATE.0(n__and.1-0(n__isNat.1(x0), y1)) → AND.1-0(isNat.1(x0), y1)
ISNATILIST.0(n__cons.0-0(n__and.1-0(x0, x1), y1)) → AND.1-1(isNat.0(and.1-0(activate.1(x0), x1)), n__isNatIList.0(activate.0(y1)))
ISNATLIST.0(n__cons.1-0(n__and.0-1(x0, x1), y1)) → AND.1-1(isNat.1(and.0-1(activate.0(x0), x1)), n__isNatList.0(activate.0(y1)))
ISNATLIST.0(n__cons.1-0(n__and.1-1(x0, x1), y1)) → AND.1-1(isNat.1(and.1-1(activate.1(x0), x1)), n__isNatList.0(activate.0(y1)))
ACTIVATE.0(n__and.1-0(n__and.1-1(x0, x1), y1)) → AND.1-0(and.1-1(activate.1(x0), x1), y1)
The remaining pairs can at least be oriented weakly.
ISNATILIST.0(n__cons.0-0(x0, y1)) → AND.1-1(isNat.0(x0), n__isNatIList.0(activate.0(y1)))
ACTIVATE.0(n__and.1-0(X1, X2)) → ACTIVATE.1(X1)
ISNAT.0(n__s.0(n__and.0-0(x0, x1))) → ISNAT.0(and.0-0(activate.0(x0), x1))
AND.1-1(tt., X) → ACTIVATE.1(X)
ACTIVATE.1(n__isNat.0(X)) → ISNAT.0(X)
ISNAT.0(n__s.0(x0)) → ISNAT.0(x0)
ISNAT.0(n__s.0(n__s.1(x0))) → ISNAT.0(s.1(activate.1(x0)))
ACTIVATE.1(n__isNatIList.0(X)) → ISNATILIST.0(X)
ISNAT.0(n__s.0(n__length.0(x0))) → ISNAT.0(length.0(activate.0(x0)))
ACTIVATE.1(n__and.1-1(n__isNat.0(x0), y1)) → AND.1-1(isNat.0(x0), y1)
ACTIVATE.0(n__s.1(X)) → ACTIVATE.1(X)
ISNAT.0(n__s.0(n__and.1-0(x0, x1))) → ISNAT.0(and.1-0(activate.1(x0), x1))
ACTIVATE.0(n__s.0(X)) → ACTIVATE.0(X)
ISNATLIST.0(n__cons.0-0(n__0., y1)) → AND.1-1(isNat.0(0.), n__isNatList.0(activate.0(y1)))
AND.1-0(tt., X) → ACTIVATE.0(X)
ISNATILIST.0(n__cons.0-0(n__0., y1)) → AND.1-1(isNat.0(0.), n__isNatIList.0(activate.0(y1)))
ISNAT.0(n__s.0(n__length.1(x0))) → ISNAT.0(length.1(activate.1(x0)))
ACTIVATE.1(n__isNatList.0(X)) → ISNATLIST.0(X)
ACTIVATE.1(n__and.1-1(n__isNat.1(x0), y1)) → AND.1-1(isNat.1(x0), y1)
ISNAT.0(n__s.0(n__s.0(x0))) → ISNAT.0(s.0(activate.0(x0)))
ACTIVATE.1(n__and.1-1(X1, X2)) → ACTIVATE.1(X1)
ISNATLIST.0(n__cons.0-0(x0, y1)) → AND.1-1(isNat.0(x0), n__isNatList.0(activate.0(y1)))
ACTIVATE.1(n__and.1-1(x0, y1)) → AND.1-1(x0, y1)
ACTIVATE.1(n__and.1-1(n__and.1-1(x0, x1), y1)) → AND.1-1(and.1-1(activate.1(x0), x1), y1)
Used ordering: Polynomial interpretation [25]:
POL(0.) = 0
POL(ACTIVATE.0(x1)) = x1
POL(ACTIVATE.1(x1)) = 1 + x1
POL(AND.1-0(x1, x2)) = x2
POL(AND.1-1(x1, x2)) = 1 + x2
POL(ISNAT.0(x1)) = 1 + x1
POL(ISNATILIST.0(x1)) = 1 + x1
POL(ISNATLIST.0(x1)) = 1 + x1
POL(U11.1-0(x1, x2)) = x2
POL(U11.1-1(x1, x2)) = x2
POL(U21.1(x1)) = 0
POL(U31.1-0-0-0(x1, x2, x3, x4)) = x2 + x3 + x4
POL(U31.1-0-0-1(x1, x2, x3, x4)) = 1 + x2 + x3
POL(U31.1-0-1-0(x1, x2, x3, x4)) = x2 + x4
POL(U31.1-0-1-1(x1, x2, x3, x4)) = 1 + x2
POL(U31.1-1-0-0(x1, x2, x3, x4)) = x3 + x4
POL(U31.1-1-0-1(x1, x2, x3, x4)) = 1 + x3
POL(U31.1-1-1-0(x1, x2, x3, x4)) = 1 + x2 + x4
POL(U31.1-1-1-1(x1, x2, x3, x4)) = 1
POL(activate.0(x1)) = x1
POL(activate.1(x1)) = x1
POL(and.0-0(x1, x2)) = x1
POL(and.0-1(x1, x2)) = x1
POL(and.1-0(x1, x2)) = 1 + x1 + x2
POL(and.1-1(x1, x2)) = x1 + x2
POL(cons.0-0(x1, x2)) = x1 + x2
POL(cons.0-1(x1, x2)) = x1 + x2
POL(cons.1-0(x1, x2)) = 1 + x2
POL(cons.1-1(x1, x2)) = 1 + x2
POL(isNat.0(x1)) = x1
POL(isNat.1(x1)) = 0
POL(isNatIList.0(x1)) = x1
POL(isNatIList.1(x1)) = 0
POL(isNatList.0(x1)) = x1
POL(isNatList.1(x1)) = 0
POL(length.0(x1)) = x1
POL(length.1(x1)) = 0
POL(n__0.) = 0
POL(n__and.0-0(x1, x2)) = x1
POL(n__and.0-1(x1, x2)) = x1
POL(n__and.1-0(x1, x2)) = 1 + x1 + x2
POL(n__and.1-1(x1, x2)) = x1 + x2
POL(n__cons.0-0(x1, x2)) = x1 + x2
POL(n__cons.0-1(x1, x2)) = x1 + x2
POL(n__cons.1-0(x1, x2)) = 1 + x2
POL(n__cons.1-1(x1, x2)) = 1 + x2
POL(n__isNat.0(x1)) = x1
POL(n__isNat.1(x1)) = 0
POL(n__isNatIList.0(x1)) = x1
POL(n__isNatIList.1(x1)) = 0
POL(n__isNatList.0(x1)) = x1
POL(n__isNatList.1(x1)) = 0
POL(n__length.0(x1)) = x1
POL(n__length.1(x1)) = 0
POL(n__nil.) = 0
POL(n__s.0(x1)) = x1
POL(n__s.1(x1)) = 1 + x1
POL(n__take.0-0(x1, x2)) = x1 + x2
POL(n__take.0-1(x1, x2)) = x1
POL(n__take.1-0(x1, x2)) = x2
POL(n__take.1-1(x1, x2)) = 0
POL(n__zeros.) = 0
POL(nil.) = 0
POL(s.0(x1)) = x1
POL(s.1(x1)) = 1 + x1
POL(take.0-0(x1, x2)) = x1 + x2
POL(take.0-1(x1, x2)) = x1
POL(take.1-0(x1, x2)) = x2
POL(take.1-1(x1, x2)) = 0
POL(tt.) = 0
POL(zeros.) = 0
The following usable rules [17] were oriented:
take.0-0(s.0(M), cons.0-0(N, IL)) → U31.1-0-0-0(and.1-1(isNatIList.0(activate.0(IL)), n__and.1-1(n__isNat.0(M), n__isNat.0(N))), activate.0(IL), M, N)
length.0(cons.1-0(N, L)) → U11.1-0(and.1-1(isNatList.0(activate.0(L)), n__isNat.1(N)), activate.0(L))
take.0-0(s.1(M), cons.0-1(N, IL)) → U31.1-1-1-0(and.1-1(isNatIList.1(activate.1(IL)), n__and.1-1(n__isNat.1(M), n__isNat.0(N))), activate.1(IL), M, N)
isNatIList.0(n__zeros.) → tt.
activate.0(n__cons.1-0(X1, X2)) → cons.1-0(activate.1(X1), X2)
isNatList.0(n__nil.) → tt.
take.0-0(s.0(M), cons.0-1(N, IL)) → U31.1-1-0-0(and.1-1(isNatIList.1(activate.1(IL)), n__and.1-1(n__isNat.0(M), n__isNat.0(N))), activate.1(IL), M, N)
U31.1-0-0-1(tt., IL, M, N) → cons.1-0(activate.1(N), n__take.0-0(activate.0(M), activate.0(IL)))
U11.1-0(tt., L) → s.0(length.0(activate.0(L)))
take.0-0(s.1(M), cons.1-1(N, IL)) → U31.1-1-1-1(and.1-1(isNatIList.1(activate.1(IL)), n__and.1-1(n__isNat.1(M), n__isNat.1(N))), activate.1(IL), M, N)
isNat.0(n__s.1(V1)) → isNat.1(activate.1(V1))
0. → n__0.
U31.1-0-1-0(tt., IL, M, N) → cons.0-0(activate.0(N), n__take.1-0(activate.1(M), activate.0(IL)))
take.0-1(0., IL) → U21.1(isNatIList.1(IL))
activate.1(X) → X
isNatIList.1(V) → isNatList.1(activate.1(V))
activate.0(n__nil.) → nil.
activate.0(X) → X
and.1-0(X1, X2) → n__and.1-0(X1, X2)
take.0-1(X1, X2) → n__take.0-1(X1, X2)
cons.1-1(X1, X2) → n__cons.1-1(X1, X2)
length.1(X) → n__length.1(X)
U31.1-1-1-1(tt., IL, M, N) → cons.1-0(activate.1(N), n__take.1-1(activate.1(M), activate.1(IL)))
isNatList.1(X) → n__isNatList.1(X)
U31.1-1-0-1(tt., IL, M, N) → cons.1-0(activate.1(N), n__take.0-1(activate.0(M), activate.1(IL)))
activate.0(n__cons.1-1(X1, X2)) → cons.1-1(activate.1(X1), X2)
length.0(cons.0-0(N, L)) → U11.1-0(and.1-1(isNatList.0(activate.0(L)), n__isNat.0(N)), activate.0(L))
U11.1-1(tt., L) → s.0(length.1(activate.1(L)))
isNatList.0(X) → n__isNatList.0(X)
activate.0(n__take.0-0(X1, X2)) → take.0-0(activate.0(X1), activate.0(X2))
take.0-0(s.1(M), cons.1-0(N, IL)) → U31.1-0-1-1(and.1-1(isNatIList.0(activate.0(IL)), n__and.1-1(n__isNat.1(M), n__isNat.1(N))), activate.0(IL), M, N)
nil. → n__nil.
isNat.0(n__0.) → tt.
take.0-0(s.1(M), cons.0-0(N, IL)) → U31.1-0-1-0(and.1-1(isNatIList.0(activate.0(IL)), n__and.1-1(n__isNat.1(M), n__isNat.0(N))), activate.0(IL), M, N)
take.0-0(s.0(M), cons.1-1(N, IL)) → U31.1-1-0-1(and.1-1(isNatIList.1(activate.1(IL)), n__and.1-1(n__isNat.0(M), n__isNat.1(N))), activate.1(IL), M, N)
activate.1(n__isNatList.1(X)) → isNatList.1(X)
activate.0(n__0.) → 0.
activate.1(n__and.0-1(X1, X2)) → and.0-1(activate.0(X1), X2)
activate.0(n__length.0(X)) → length.0(activate.0(X))
zeros. → cons.0-0(0., n__zeros.)
activate.0(n__s.1(X)) → s.1(activate.1(X))
isNat.0(X) → n__isNat.0(X)
cons.1-0(X1, X2) → n__cons.1-0(X1, X2)
and.1-1(X1, X2) → n__and.1-1(X1, X2)
isNatIList.0(X) → n__isNatIList.0(X)
activate.0(n__take.1-1(X1, X2)) → take.1-1(activate.1(X1), activate.1(X2))
activate.0(n__and.0-0(X1, X2)) → and.0-0(activate.0(X1), X2)
activate.0(n__take.0-1(X1, X2)) → take.0-1(activate.0(X1), activate.1(X2))
U21.1(tt.) → nil.
and.0-0(X1, X2) → n__and.0-0(X1, X2)
activate.0(n__s.0(X)) → s.0(activate.0(X))
activate.1(n__isNat.1(X)) → isNat.1(X)
length.0(X) → n__length.0(X)
activate.0(n__zeros.) → zeros.
and.1-0(tt., X) → activate.0(X)
activate.0(n__and.1-0(X1, X2)) → and.1-0(activate.1(X1), X2)
U31.1-0-1-1(tt., IL, M, N) → cons.1-0(activate.1(N), n__take.1-0(activate.1(M), activate.0(IL)))
take.0-0(s.0(M), cons.1-0(N, IL)) → U31.1-0-0-1(and.1-1(isNatIList.0(activate.0(IL)), n__and.1-1(n__isNat.0(M), n__isNat.1(N))), activate.0(IL), M, N)
U31.1-0-0-0(tt., IL, M, N) → cons.0-0(activate.0(N), n__take.0-0(activate.0(M), activate.0(IL)))
s.1(X) → n__s.1(X)
take.1-0(X1, X2) → n__take.1-0(X1, X2)
take.0-0(0., IL) → U21.1(isNatIList.0(IL))
activate.0(n__take.1-0(X1, X2)) → take.1-0(activate.1(X1), activate.0(X2))
length.0(nil.) → 0.
isNat.1(X) → n__isNat.1(X)
activate.0(n__cons.0-0(X1, X2)) → cons.0-0(activate.0(X1), X2)
take.1-1(X1, X2) → n__take.1-1(X1, X2)
activate.0(n__length.1(X)) → length.1(activate.1(X))
isNat.0(n__length.1(V1)) → isNatList.1(activate.1(V1))
and.0-1(X1, X2) → n__and.0-1(X1, X2)
activate.1(n__isNatIList.1(X)) → isNatIList.1(X)
isNatIList.1(X) → n__isNatIList.1(X)
length.0(cons.1-1(N, L)) → U11.1-1(and.1-1(isNatList.1(activate.1(L)), n__isNat.1(N)), activate.1(L))
zeros. → n__zeros.
take.0-0(X1, X2) → n__take.0-0(X1, X2)
U31.1-1-0-0(tt., IL, M, N) → cons.0-0(activate.0(N), n__take.0-1(activate.0(M), activate.1(IL)))
length.0(cons.0-1(N, L)) → U11.1-1(and.1-1(isNatList.1(activate.1(L)), n__isNat.0(N)), activate.1(L))
s.0(X) → n__s.0(X)
cons.0-0(X1, X2) → n__cons.0-0(X1, X2)
cons.0-1(X1, X2) → n__cons.0-1(X1, X2)
U31.1-1-1-0(tt., IL, M, N) → cons.0-0(activate.0(N), n__take.1-1(activate.1(M), activate.1(IL)))
activate.0(n__cons.0-1(X1, X2)) → cons.0-1(activate.0(X1), X2)
isNatList.0(n__take.1-1(V1, V2)) → and.1-1(isNat.1(activate.1(V1)), n__isNatIList.1(activate.1(V2)))
isNatIList.0(n__cons.1-1(V1, V2)) → and.1-1(isNat.1(activate.1(V1)), n__isNatIList.1(activate.1(V2)))
isNatList.0(n__take.0-0(V1, V2)) → and.1-1(isNat.0(activate.0(V1)), n__isNatIList.0(activate.0(V2)))
isNatList.0(n__take.1-0(V1, V2)) → and.1-1(isNat.1(activate.1(V1)), n__isNatIList.0(activate.0(V2)))
isNat.0(n__s.0(V1)) → isNat.0(activate.0(V1))
isNatIList.0(n__cons.0-0(V1, V2)) → and.1-1(isNat.0(activate.0(V1)), n__isNatIList.0(activate.0(V2)))
isNat.0(n__length.0(V1)) → isNatList.0(activate.0(V1))
isNatList.0(n__take.0-1(V1, V2)) → and.1-1(isNat.0(activate.0(V1)), n__isNatIList.1(activate.1(V2)))
activate.1(n__isNatList.0(X)) → isNatList.0(X)
and.1-1(tt., X) → activate.1(X)
isNatIList.0(n__cons.1-0(V1, V2)) → and.1-1(isNat.1(activate.1(V1)), n__isNatIList.0(activate.0(V2)))
isNatList.0(n__cons.0-1(V1, V2)) → and.1-1(isNat.0(activate.0(V1)), n__isNatList.1(activate.1(V2)))
isNatIList.0(V) → isNatList.0(activate.0(V))
activate.1(n__isNatIList.0(X)) → isNatIList.0(X)
activate.1(n__isNat.0(X)) → isNat.0(X)
isNatList.0(n__cons.1-0(V1, V2)) → and.1-1(isNat.1(activate.1(V1)), n__isNatList.0(activate.0(V2)))
isNatList.0(n__cons.0-0(V1, V2)) → and.1-1(isNat.0(activate.0(V1)), n__isNatList.0(activate.0(V2)))
isNatList.0(n__cons.1-1(V1, V2)) → and.1-1(isNat.1(activate.1(V1)), n__isNatList.1(activate.1(V2)))
activate.1(n__and.1-1(X1, X2)) → and.1-1(activate.1(X1), X2)
isNatIList.0(n__cons.0-1(V1, V2)) → and.1-1(isNat.0(activate.0(V1)), n__isNatIList.1(activate.1(V2)))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ SemLabProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ SemLabProof2
↳ QDPOrderProof
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
ISNATILIST.0(n__cons.0-0(x0, y1)) → AND.1-1(isNat.0(x0), n__isNatIList.0(activate.0(y1)))
ACTIVATE.0(n__and.1-0(X1, X2)) → ACTIVATE.1(X1)
ISNAT.0(n__s.0(n__and.0-0(x0, x1))) → ISNAT.0(and.0-0(activate.0(x0), x1))
ISNAT.0(n__s.0(n__and.1-0(x0, x1))) → ISNAT.0(and.1-0(activate.1(x0), x1))
AND.1-1(tt., X) → ACTIVATE.1(X)
ISNATLIST.0(n__cons.0-0(n__0., y1)) → AND.1-1(isNat.0(0.), n__isNatList.0(activate.0(y1)))
ACTIVATE.0(n__s.0(X)) → ACTIVATE.0(X)
AND.1-0(tt., X) → ACTIVATE.0(X)
ISNAT.0(n__s.0(n__length.1(x0))) → ISNAT.0(length.1(activate.1(x0)))
ISNATILIST.0(n__cons.0-0(n__0., y1)) → AND.1-1(isNat.0(0.), n__isNatIList.0(activate.0(y1)))
ACTIVATE.1(n__isNat.0(X)) → ISNAT.0(X)
ACTIVATE.1(n__and.1-1(n__isNat.1(x0), y1)) → AND.1-1(isNat.1(x0), y1)
ACTIVATE.1(n__isNatList.0(X)) → ISNATLIST.0(X)
ISNAT.0(n__s.0(n__s.0(x0))) → ISNAT.0(s.0(activate.0(x0)))
ISNAT.0(n__s.0(x0)) → ISNAT.0(x0)
ACTIVATE.1(n__and.1-1(X1, X2)) → ACTIVATE.1(X1)
ISNATLIST.0(n__cons.0-0(x0, y1)) → AND.1-1(isNat.0(x0), n__isNatList.0(activate.0(y1)))
ACTIVATE.1(n__and.1-1(x0, y1)) → AND.1-1(x0, y1)
ISNAT.0(n__s.0(n__s.1(x0))) → ISNAT.0(s.1(activate.1(x0)))
ACTIVATE.1(n__and.1-1(n__and.1-1(x0, x1), y1)) → AND.1-1(and.1-1(activate.1(x0), x1), y1)
ACTIVATE.1(n__isNatIList.0(X)) → ISNATILIST.0(X)
ISNAT.0(n__s.0(n__length.0(x0))) → ISNAT.0(length.0(activate.0(x0)))
ACTIVATE.1(n__and.1-1(n__isNat.0(x0), y1)) → AND.1-1(isNat.0(x0), y1)
ACTIVATE.0(n__s.1(X)) → ACTIVATE.1(X)
The TRS R consists of the following rules:
activate.0(n__and.1-0(X1, X2)) → and.1-0(activate.1(X1), X2)
take.0-0(s.0(M), cons.1-0(N, IL)) → U31.1-0-0-1(and.1-1(isNatIList.0(activate.0(IL)), n__and.1-1(n__isNat.0(M), n__isNat.1(N))), activate.0(IL), M, N)
U31.1-0-1-1(tt., IL, M, N) → cons.1-0(activate.1(N), n__take.1-0(activate.1(M), activate.0(IL)))
and.1-0(tt., X) → activate.0(X)
activate.0(n__zeros.) → zeros.
and.0-0(X1, X2) → n__and.0-0(X1, X2)
activate.0(n__s.0(X)) → s.0(activate.0(X))
activate.0(n__take.0-1(X1, X2)) → take.0-1(activate.0(X1), activate.1(X2))
U21.1(tt.) → nil.
activate.1(n__isNat.1(X)) → isNat.1(X)
length.0(X) → n__length.0(X)
isNatList.0(n__take.0-0(V1, V2)) → and.1-1(isNat.0(activate.0(V1)), n__isNatIList.0(activate.0(V2)))
isNat.0(n__s.0(V1)) → isNat.0(activate.0(V1))
cons.1-0(X1, X2) → n__cons.1-0(X1, X2)
and.1-1(X1, X2) → n__and.1-1(X1, X2)
activate.0(n__s.1(X)) → s.1(activate.1(X))
isNat.0(X) → n__isNat.0(X)
activate.0(n__take.1-1(X1, X2)) → take.1-1(activate.1(X1), activate.1(X2))
activate.0(n__and.0-0(X1, X2)) → and.0-0(activate.0(X1), X2)
isNatList.0(n__cons.1-0(V1, V2)) → and.1-1(isNat.1(activate.1(V1)), n__isNatList.0(activate.0(V2)))
isNatIList.0(X) → n__isNatIList.0(X)
length.0(cons.0-1(N, L)) → U11.1-1(and.1-1(isNatList.1(activate.1(L)), n__isNat.0(N)), activate.1(L))
U31.1-1-0-0(tt., IL, M, N) → cons.0-0(activate.0(N), n__take.0-1(activate.0(M), activate.1(IL)))
cons.0-0(X1, X2) → n__cons.0-0(X1, X2)
s.0(X) → n__s.0(X)
U31.1-1-1-0(tt., IL, M, N) → cons.0-0(activate.0(N), n__take.1-1(activate.1(M), activate.1(IL)))
cons.0-1(X1, X2) → n__cons.0-1(X1, X2)
activate.1(n__isNatList.0(X)) → isNatList.0(X)
activate.0(n__cons.0-1(X1, X2)) → cons.0-1(activate.0(X1), X2)
and.0-1(X1, X2) → n__and.0-1(X1, X2)
isNat.0(n__length.1(V1)) → isNatList.1(activate.1(V1))
activate.1(n__isNatIList.1(X)) → isNatIList.1(X)
isNatIList.0(n__cons.1-1(V1, V2)) → and.1-1(isNat.1(activate.1(V1)), n__isNatIList.1(activate.1(V2)))
length.0(cons.1-1(N, L)) → U11.1-1(and.1-1(isNatList.1(activate.1(L)), n__isNat.1(N)), activate.1(L))
isNatIList.1(X) → n__isNatIList.1(X)
take.0-0(X1, X2) → n__take.0-0(X1, X2)
zeros. → n__zeros.
activate.0(n__take.1-0(X1, X2)) → take.1-0(activate.1(X1), activate.0(X2))
length.0(nil.) → 0.
isNat.1(X) → n__isNat.1(X)
activate.1(n__and.1-1(X1, X2)) → and.1-1(activate.1(X1), X2)
activate.0(n__cons.0-0(X1, X2)) → cons.0-0(activate.0(X1), X2)
isNatList.0(n__take.1-0(V1, V2)) → and.1-1(isNat.1(activate.1(V1)), n__isNatIList.0(activate.0(V2)))
take.1-1(X1, X2) → n__take.1-1(X1, X2)
activate.0(n__length.1(X)) → length.1(activate.1(X))
U31.1-0-0-0(tt., IL, M, N) → cons.0-0(activate.0(N), n__take.0-0(activate.0(M), activate.0(IL)))
isNat.0(n__length.0(V1)) → isNatList.0(activate.0(V1))
isNatIList.0(n__cons.1-0(V1, V2)) → and.1-1(isNat.1(activate.1(V1)), n__isNatIList.0(activate.0(V2)))
s.1(X) → n__s.1(X)
isNatList.0(n__cons.0-1(V1, V2)) → and.1-1(isNat.0(activate.0(V1)), n__isNatList.1(activate.1(V2)))
take.1-0(X1, X2) → n__take.1-0(X1, X2)
isNatIList.0(V) → isNatList.0(activate.0(V))
take.0-0(0., IL) → U21.1(isNatIList.0(IL))
activate.1(n__isNatIList.0(X)) → isNatIList.0(X)
isNatList.0(n__cons.0-0(V1, V2)) → and.1-1(isNat.0(activate.0(V1)), n__isNatList.0(activate.0(V2)))
isNatList.0(n__cons.1-1(V1, V2)) → and.1-1(isNat.1(activate.1(V1)), n__isNatList.1(activate.1(V2)))
activate.0(n__cons.1-1(X1, X2)) → cons.1-1(activate.1(X1), X2)
isNatList.0(n__take.1-1(V1, V2)) → and.1-1(isNat.1(activate.1(V1)), n__isNatIList.1(activate.1(V2)))
U31.1-1-0-1(tt., IL, M, N) → cons.1-0(activate.1(N), n__take.0-1(activate.0(M), activate.1(IL)))
isNatList.1(X) → n__isNatList.1(X)
U31.1-1-1-1(tt., IL, M, N) → cons.1-0(activate.1(N), n__take.1-1(activate.1(M), activate.1(IL)))
length.1(X) → n__length.1(X)
cons.1-1(X1, X2) → n__cons.1-1(X1, X2)
take.0-1(X1, X2) → n__take.0-1(X1, X2)
and.1-0(X1, X2) → n__and.1-0(X1, X2)
activate.0(X) → X
activate.0(n__nil.) → nil.
and.1-1(tt., X) → activate.1(X)
isNatIList.1(V) → isNatList.1(activate.1(V))
take.0-1(0., IL) → U21.1(isNatIList.1(IL))
activate.1(X) → X
0. → n__0.
U31.1-0-1-0(tt., IL, M, N) → cons.0-0(activate.0(N), n__take.1-0(activate.1(M), activate.0(IL)))
take.0-0(s.1(M), cons.1-1(N, IL)) → U31.1-1-1-1(and.1-1(isNatIList.1(activate.1(IL)), n__and.1-1(n__isNat.1(M), n__isNat.1(N))), activate.1(IL), M, N)
isNat.0(n__s.1(V1)) → isNat.1(activate.1(V1))
U31.1-0-0-1(tt., IL, M, N) → cons.1-0(activate.1(N), n__take.0-0(activate.0(M), activate.0(IL)))
U11.1-0(tt., L) → s.0(length.0(activate.0(L)))
isNatList.0(n__nil.) → tt.
take.0-0(s.0(M), cons.0-1(N, IL)) → U31.1-1-0-0(and.1-1(isNatIList.1(activate.1(IL)), n__and.1-1(n__isNat.0(M), n__isNat.0(N))), activate.1(IL), M, N)
isNatList.0(n__take.0-1(V1, V2)) → and.1-1(isNat.0(activate.0(V1)), n__isNatIList.1(activate.1(V2)))
activate.0(n__cons.1-0(X1, X2)) → cons.1-0(activate.1(X1), X2)
take.0-0(s.1(M), cons.0-1(N, IL)) → U31.1-1-1-0(and.1-1(isNatIList.1(activate.1(IL)), n__and.1-1(n__isNat.1(M), n__isNat.0(N))), activate.1(IL), M, N)
isNatIList.0(n__zeros.) → tt.
take.0-0(s.0(M), cons.0-0(N, IL)) → U31.1-0-0-0(and.1-1(isNatIList.0(activate.0(IL)), n__and.1-1(n__isNat.0(M), n__isNat.0(N))), activate.0(IL), M, N)
length.0(cons.1-0(N, L)) → U11.1-0(and.1-1(isNatList.0(activate.0(L)), n__isNat.1(N)), activate.0(L))
activate.0(n__length.0(X)) → length.0(activate.0(X))
activate.1(n__and.0-1(X1, X2)) → and.0-1(activate.0(X1), X2)
zeros. → cons.0-0(0., n__zeros.)
isNatIList.0(n__cons.0-0(V1, V2)) → and.1-1(isNat.0(activate.0(V1)), n__isNatIList.0(activate.0(V2)))
take.0-0(s.0(M), cons.1-1(N, IL)) → U31.1-1-0-1(and.1-1(isNatIList.1(activate.1(IL)), n__and.1-1(n__isNat.0(M), n__isNat.1(N))), activate.1(IL), M, N)
take.0-0(s.1(M), cons.0-0(N, IL)) → U31.1-0-1-0(and.1-1(isNatIList.0(activate.0(IL)), n__and.1-1(n__isNat.1(M), n__isNat.0(N))), activate.0(IL), M, N)
activate.0(n__0.) → 0.
activate.1(n__isNatList.1(X)) → isNatList.1(X)
take.0-0(s.1(M), cons.1-0(N, IL)) → U31.1-0-1-1(and.1-1(isNatIList.0(activate.0(IL)), n__and.1-1(n__isNat.1(M), n__isNat.1(N))), activate.0(IL), M, N)
activate.0(n__take.0-0(X1, X2)) → take.0-0(activate.0(X1), activate.0(X2))
isNat.0(n__0.) → tt.
nil. → n__nil.
U11.1-1(tt., L) → s.0(length.1(activate.1(L)))
length.0(cons.0-0(N, L)) → U11.1-0(and.1-1(isNatList.0(activate.0(L)), n__isNat.0(N)), activate.0(L))
activate.1(n__isNat.0(X)) → isNat.0(X)
isNatList.0(X) → n__isNatList.0(X)
isNatIList.0(n__cons.0-1(V1, V2)) → and.1-1(isNat.0(activate.0(V1)), n__isNatIList.1(activate.1(V2)))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 3 SCCs with 4 less nodes.
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ SemLabProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ SemLabProof2
↳ QDPOrderProof
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
ISNAT.0(n__s.0(n__s.0(x0))) → ISNAT.0(s.0(activate.0(x0)))
ISNAT.0(n__s.0(n__and.1-0(x0, x1))) → ISNAT.0(and.1-0(activate.1(x0), x1))
ISNAT.0(n__s.0(n__and.0-0(x0, x1))) → ISNAT.0(and.0-0(activate.0(x0), x1))
ISNAT.0(n__s.0(x0)) → ISNAT.0(x0)
ISNAT.0(n__s.0(n__s.1(x0))) → ISNAT.0(s.1(activate.1(x0)))
ISNAT.0(n__s.0(n__length.1(x0))) → ISNAT.0(length.1(activate.1(x0)))
ISNAT.0(n__s.0(n__length.0(x0))) → ISNAT.0(length.0(activate.0(x0)))
The TRS R consists of the following rules:
activate.0(n__and.1-0(X1, X2)) → and.1-0(activate.1(X1), X2)
take.0-0(s.0(M), cons.1-0(N, IL)) → U31.1-0-0-1(and.1-1(isNatIList.0(activate.0(IL)), n__and.1-1(n__isNat.0(M), n__isNat.1(N))), activate.0(IL), M, N)
U31.1-0-1-1(tt., IL, M, N) → cons.1-0(activate.1(N), n__take.1-0(activate.1(M), activate.0(IL)))
and.1-0(tt., X) → activate.0(X)
activate.0(n__zeros.) → zeros.
and.0-0(X1, X2) → n__and.0-0(X1, X2)
activate.0(n__s.0(X)) → s.0(activate.0(X))
activate.0(n__take.0-1(X1, X2)) → take.0-1(activate.0(X1), activate.1(X2))
U21.1(tt.) → nil.
activate.1(n__isNat.1(X)) → isNat.1(X)
length.0(X) → n__length.0(X)
isNatList.0(n__take.0-0(V1, V2)) → and.1-1(isNat.0(activate.0(V1)), n__isNatIList.0(activate.0(V2)))
isNat.0(n__s.0(V1)) → isNat.0(activate.0(V1))
cons.1-0(X1, X2) → n__cons.1-0(X1, X2)
and.1-1(X1, X2) → n__and.1-1(X1, X2)
activate.0(n__s.1(X)) → s.1(activate.1(X))
isNat.0(X) → n__isNat.0(X)
activate.0(n__take.1-1(X1, X2)) → take.1-1(activate.1(X1), activate.1(X2))
activate.0(n__and.0-0(X1, X2)) → and.0-0(activate.0(X1), X2)
isNatList.0(n__cons.1-0(V1, V2)) → and.1-1(isNat.1(activate.1(V1)), n__isNatList.0(activate.0(V2)))
isNatIList.0(X) → n__isNatIList.0(X)
length.0(cons.0-1(N, L)) → U11.1-1(and.1-1(isNatList.1(activate.1(L)), n__isNat.0(N)), activate.1(L))
U31.1-1-0-0(tt., IL, M, N) → cons.0-0(activate.0(N), n__take.0-1(activate.0(M), activate.1(IL)))
cons.0-0(X1, X2) → n__cons.0-0(X1, X2)
s.0(X) → n__s.0(X)
U31.1-1-1-0(tt., IL, M, N) → cons.0-0(activate.0(N), n__take.1-1(activate.1(M), activate.1(IL)))
cons.0-1(X1, X2) → n__cons.0-1(X1, X2)
activate.1(n__isNatList.0(X)) → isNatList.0(X)
activate.0(n__cons.0-1(X1, X2)) → cons.0-1(activate.0(X1), X2)
and.0-1(X1, X2) → n__and.0-1(X1, X2)
isNat.0(n__length.1(V1)) → isNatList.1(activate.1(V1))
activate.1(n__isNatIList.1(X)) → isNatIList.1(X)
isNatIList.0(n__cons.1-1(V1, V2)) → and.1-1(isNat.1(activate.1(V1)), n__isNatIList.1(activate.1(V2)))
length.0(cons.1-1(N, L)) → U11.1-1(and.1-1(isNatList.1(activate.1(L)), n__isNat.1(N)), activate.1(L))
isNatIList.1(X) → n__isNatIList.1(X)
take.0-0(X1, X2) → n__take.0-0(X1, X2)
zeros. → n__zeros.
activate.0(n__take.1-0(X1, X2)) → take.1-0(activate.1(X1), activate.0(X2))
length.0(nil.) → 0.
isNat.1(X) → n__isNat.1(X)
activate.1(n__and.1-1(X1, X2)) → and.1-1(activate.1(X1), X2)
activate.0(n__cons.0-0(X1, X2)) → cons.0-0(activate.0(X1), X2)
isNatList.0(n__take.1-0(V1, V2)) → and.1-1(isNat.1(activate.1(V1)), n__isNatIList.0(activate.0(V2)))
take.1-1(X1, X2) → n__take.1-1(X1, X2)
activate.0(n__length.1(X)) → length.1(activate.1(X))
U31.1-0-0-0(tt., IL, M, N) → cons.0-0(activate.0(N), n__take.0-0(activate.0(M), activate.0(IL)))
isNat.0(n__length.0(V1)) → isNatList.0(activate.0(V1))
isNatIList.0(n__cons.1-0(V1, V2)) → and.1-1(isNat.1(activate.1(V1)), n__isNatIList.0(activate.0(V2)))
s.1(X) → n__s.1(X)
isNatList.0(n__cons.0-1(V1, V2)) → and.1-1(isNat.0(activate.0(V1)), n__isNatList.1(activate.1(V2)))
take.1-0(X1, X2) → n__take.1-0(X1, X2)
isNatIList.0(V) → isNatList.0(activate.0(V))
take.0-0(0., IL) → U21.1(isNatIList.0(IL))
activate.1(n__isNatIList.0(X)) → isNatIList.0(X)
isNatList.0(n__cons.0-0(V1, V2)) → and.1-1(isNat.0(activate.0(V1)), n__isNatList.0(activate.0(V2)))
isNatList.0(n__cons.1-1(V1, V2)) → and.1-1(isNat.1(activate.1(V1)), n__isNatList.1(activate.1(V2)))
activate.0(n__cons.1-1(X1, X2)) → cons.1-1(activate.1(X1), X2)
isNatList.0(n__take.1-1(V1, V2)) → and.1-1(isNat.1(activate.1(V1)), n__isNatIList.1(activate.1(V2)))
U31.1-1-0-1(tt., IL, M, N) → cons.1-0(activate.1(N), n__take.0-1(activate.0(M), activate.1(IL)))
isNatList.1(X) → n__isNatList.1(X)
U31.1-1-1-1(tt., IL, M, N) → cons.1-0(activate.1(N), n__take.1-1(activate.1(M), activate.1(IL)))
length.1(X) → n__length.1(X)
cons.1-1(X1, X2) → n__cons.1-1(X1, X2)
take.0-1(X1, X2) → n__take.0-1(X1, X2)
and.1-0(X1, X2) → n__and.1-0(X1, X2)
activate.0(X) → X
activate.0(n__nil.) → nil.
and.1-1(tt., X) → activate.1(X)
isNatIList.1(V) → isNatList.1(activate.1(V))
take.0-1(0., IL) → U21.1(isNatIList.1(IL))
activate.1(X) → X
0. → n__0.
U31.1-0-1-0(tt., IL, M, N) → cons.0-0(activate.0(N), n__take.1-0(activate.1(M), activate.0(IL)))
take.0-0(s.1(M), cons.1-1(N, IL)) → U31.1-1-1-1(and.1-1(isNatIList.1(activate.1(IL)), n__and.1-1(n__isNat.1(M), n__isNat.1(N))), activate.1(IL), M, N)
isNat.0(n__s.1(V1)) → isNat.1(activate.1(V1))
U31.1-0-0-1(tt., IL, M, N) → cons.1-0(activate.1(N), n__take.0-0(activate.0(M), activate.0(IL)))
U11.1-0(tt., L) → s.0(length.0(activate.0(L)))
isNatList.0(n__nil.) → tt.
take.0-0(s.0(M), cons.0-1(N, IL)) → U31.1-1-0-0(and.1-1(isNatIList.1(activate.1(IL)), n__and.1-1(n__isNat.0(M), n__isNat.0(N))), activate.1(IL), M, N)
isNatList.0(n__take.0-1(V1, V2)) → and.1-1(isNat.0(activate.0(V1)), n__isNatIList.1(activate.1(V2)))
activate.0(n__cons.1-0(X1, X2)) → cons.1-0(activate.1(X1), X2)
take.0-0(s.1(M), cons.0-1(N, IL)) → U31.1-1-1-0(and.1-1(isNatIList.1(activate.1(IL)), n__and.1-1(n__isNat.1(M), n__isNat.0(N))), activate.1(IL), M, N)
isNatIList.0(n__zeros.) → tt.
take.0-0(s.0(M), cons.0-0(N, IL)) → U31.1-0-0-0(and.1-1(isNatIList.0(activate.0(IL)), n__and.1-1(n__isNat.0(M), n__isNat.0(N))), activate.0(IL), M, N)
length.0(cons.1-0(N, L)) → U11.1-0(and.1-1(isNatList.0(activate.0(L)), n__isNat.1(N)), activate.0(L))
activate.0(n__length.0(X)) → length.0(activate.0(X))
activate.1(n__and.0-1(X1, X2)) → and.0-1(activate.0(X1), X2)
zeros. → cons.0-0(0., n__zeros.)
isNatIList.0(n__cons.0-0(V1, V2)) → and.1-1(isNat.0(activate.0(V1)), n__isNatIList.0(activate.0(V2)))
take.0-0(s.0(M), cons.1-1(N, IL)) → U31.1-1-0-1(and.1-1(isNatIList.1(activate.1(IL)), n__and.1-1(n__isNat.0(M), n__isNat.1(N))), activate.1(IL), M, N)
take.0-0(s.1(M), cons.0-0(N, IL)) → U31.1-0-1-0(and.1-1(isNatIList.0(activate.0(IL)), n__and.1-1(n__isNat.1(M), n__isNat.0(N))), activate.0(IL), M, N)
activate.0(n__0.) → 0.
activate.1(n__isNatList.1(X)) → isNatList.1(X)
take.0-0(s.1(M), cons.1-0(N, IL)) → U31.1-0-1-1(and.1-1(isNatIList.0(activate.0(IL)), n__and.1-1(n__isNat.1(M), n__isNat.1(N))), activate.0(IL), M, N)
activate.0(n__take.0-0(X1, X2)) → take.0-0(activate.0(X1), activate.0(X2))
isNat.0(n__0.) → tt.
nil. → n__nil.
U11.1-1(tt., L) → s.0(length.1(activate.1(L)))
length.0(cons.0-0(N, L)) → U11.1-0(and.1-1(isNatList.0(activate.0(L)), n__isNat.0(N)), activate.0(L))
activate.1(n__isNat.0(X)) → isNat.0(X)
isNatList.0(X) → n__isNatList.0(X)
isNatIList.0(n__cons.0-1(V1, V2)) → and.1-1(isNat.0(activate.0(V1)), n__isNatIList.1(activate.1(V2)))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ SemLabProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ SemLabProof2
↳ QDPOrderProof
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
ISNATILIST.0(n__cons.0-0(x0, y1)) → AND.1-1(isNat.0(x0), n__isNatIList.0(activate.0(y1)))
AND.1-1(tt., X) → ACTIVATE.1(X)
ACTIVATE.1(n__and.1-1(X1, X2)) → ACTIVATE.1(X1)
ISNATLIST.0(n__cons.0-0(n__0., y1)) → AND.1-1(isNat.0(0.), n__isNatList.0(activate.0(y1)))
ISNATLIST.0(n__cons.0-0(x0, y1)) → AND.1-1(isNat.0(x0), n__isNatList.0(activate.0(y1)))
ACTIVATE.1(n__and.1-1(x0, y1)) → AND.1-1(x0, y1)
ACTIVATE.1(n__and.1-1(n__and.1-1(x0, x1), y1)) → AND.1-1(and.1-1(activate.1(x0), x1), y1)
ACTIVATE.1(n__isNatIList.0(X)) → ISNATILIST.0(X)
ISNATILIST.0(n__cons.0-0(n__0., y1)) → AND.1-1(isNat.0(0.), n__isNatIList.0(activate.0(y1)))
ACTIVATE.1(n__and.1-1(n__isNat.1(x0), y1)) → AND.1-1(isNat.1(x0), y1)
ACTIVATE.1(n__and.1-1(n__isNat.0(x0), y1)) → AND.1-1(isNat.0(x0), y1)
ACTIVATE.1(n__isNatList.0(X)) → ISNATLIST.0(X)
The TRS R consists of the following rules:
activate.0(n__and.1-0(X1, X2)) → and.1-0(activate.1(X1), X2)
take.0-0(s.0(M), cons.1-0(N, IL)) → U31.1-0-0-1(and.1-1(isNatIList.0(activate.0(IL)), n__and.1-1(n__isNat.0(M), n__isNat.1(N))), activate.0(IL), M, N)
U31.1-0-1-1(tt., IL, M, N) → cons.1-0(activate.1(N), n__take.1-0(activate.1(M), activate.0(IL)))
and.1-0(tt., X) → activate.0(X)
activate.0(n__zeros.) → zeros.
and.0-0(X1, X2) → n__and.0-0(X1, X2)
activate.0(n__s.0(X)) → s.0(activate.0(X))
activate.0(n__take.0-1(X1, X2)) → take.0-1(activate.0(X1), activate.1(X2))
U21.1(tt.) → nil.
activate.1(n__isNat.1(X)) → isNat.1(X)
length.0(X) → n__length.0(X)
isNatList.0(n__take.0-0(V1, V2)) → and.1-1(isNat.0(activate.0(V1)), n__isNatIList.0(activate.0(V2)))
isNat.0(n__s.0(V1)) → isNat.0(activate.0(V1))
cons.1-0(X1, X2) → n__cons.1-0(X1, X2)
and.1-1(X1, X2) → n__and.1-1(X1, X2)
activate.0(n__s.1(X)) → s.1(activate.1(X))
isNat.0(X) → n__isNat.0(X)
activate.0(n__take.1-1(X1, X2)) → take.1-1(activate.1(X1), activate.1(X2))
activate.0(n__and.0-0(X1, X2)) → and.0-0(activate.0(X1), X2)
isNatList.0(n__cons.1-0(V1, V2)) → and.1-1(isNat.1(activate.1(V1)), n__isNatList.0(activate.0(V2)))
isNatIList.0(X) → n__isNatIList.0(X)
length.0(cons.0-1(N, L)) → U11.1-1(and.1-1(isNatList.1(activate.1(L)), n__isNat.0(N)), activate.1(L))
U31.1-1-0-0(tt., IL, M, N) → cons.0-0(activate.0(N), n__take.0-1(activate.0(M), activate.1(IL)))
cons.0-0(X1, X2) → n__cons.0-0(X1, X2)
s.0(X) → n__s.0(X)
U31.1-1-1-0(tt., IL, M, N) → cons.0-0(activate.0(N), n__take.1-1(activate.1(M), activate.1(IL)))
cons.0-1(X1, X2) → n__cons.0-1(X1, X2)
activate.1(n__isNatList.0(X)) → isNatList.0(X)
activate.0(n__cons.0-1(X1, X2)) → cons.0-1(activate.0(X1), X2)
and.0-1(X1, X2) → n__and.0-1(X1, X2)
isNat.0(n__length.1(V1)) → isNatList.1(activate.1(V1))
activate.1(n__isNatIList.1(X)) → isNatIList.1(X)
isNatIList.0(n__cons.1-1(V1, V2)) → and.1-1(isNat.1(activate.1(V1)), n__isNatIList.1(activate.1(V2)))
length.0(cons.1-1(N, L)) → U11.1-1(and.1-1(isNatList.1(activate.1(L)), n__isNat.1(N)), activate.1(L))
isNatIList.1(X) → n__isNatIList.1(X)
take.0-0(X1, X2) → n__take.0-0(X1, X2)
zeros. → n__zeros.
activate.0(n__take.1-0(X1, X2)) → take.1-0(activate.1(X1), activate.0(X2))
length.0(nil.) → 0.
isNat.1(X) → n__isNat.1(X)
activate.1(n__and.1-1(X1, X2)) → and.1-1(activate.1(X1), X2)
activate.0(n__cons.0-0(X1, X2)) → cons.0-0(activate.0(X1), X2)
isNatList.0(n__take.1-0(V1, V2)) → and.1-1(isNat.1(activate.1(V1)), n__isNatIList.0(activate.0(V2)))
take.1-1(X1, X2) → n__take.1-1(X1, X2)
activate.0(n__length.1(X)) → length.1(activate.1(X))
U31.1-0-0-0(tt., IL, M, N) → cons.0-0(activate.0(N), n__take.0-0(activate.0(M), activate.0(IL)))
isNat.0(n__length.0(V1)) → isNatList.0(activate.0(V1))
isNatIList.0(n__cons.1-0(V1, V2)) → and.1-1(isNat.1(activate.1(V1)), n__isNatIList.0(activate.0(V2)))
s.1(X) → n__s.1(X)
isNatList.0(n__cons.0-1(V1, V2)) → and.1-1(isNat.0(activate.0(V1)), n__isNatList.1(activate.1(V2)))
take.1-0(X1, X2) → n__take.1-0(X1, X2)
isNatIList.0(V) → isNatList.0(activate.0(V))
take.0-0(0., IL) → U21.1(isNatIList.0(IL))
activate.1(n__isNatIList.0(X)) → isNatIList.0(X)
isNatList.0(n__cons.0-0(V1, V2)) → and.1-1(isNat.0(activate.0(V1)), n__isNatList.0(activate.0(V2)))
isNatList.0(n__cons.1-1(V1, V2)) → and.1-1(isNat.1(activate.1(V1)), n__isNatList.1(activate.1(V2)))
activate.0(n__cons.1-1(X1, X2)) → cons.1-1(activate.1(X1), X2)
isNatList.0(n__take.1-1(V1, V2)) → and.1-1(isNat.1(activate.1(V1)), n__isNatIList.1(activate.1(V2)))
U31.1-1-0-1(tt., IL, M, N) → cons.1-0(activate.1(N), n__take.0-1(activate.0(M), activate.1(IL)))
isNatList.1(X) → n__isNatList.1(X)
U31.1-1-1-1(tt., IL, M, N) → cons.1-0(activate.1(N), n__take.1-1(activate.1(M), activate.1(IL)))
length.1(X) → n__length.1(X)
cons.1-1(X1, X2) → n__cons.1-1(X1, X2)
take.0-1(X1, X2) → n__take.0-1(X1, X2)
and.1-0(X1, X2) → n__and.1-0(X1, X2)
activate.0(X) → X
activate.0(n__nil.) → nil.
and.1-1(tt., X) → activate.1(X)
isNatIList.1(V) → isNatList.1(activate.1(V))
take.0-1(0., IL) → U21.1(isNatIList.1(IL))
activate.1(X) → X
0. → n__0.
U31.1-0-1-0(tt., IL, M, N) → cons.0-0(activate.0(N), n__take.1-0(activate.1(M), activate.0(IL)))
take.0-0(s.1(M), cons.1-1(N, IL)) → U31.1-1-1-1(and.1-1(isNatIList.1(activate.1(IL)), n__and.1-1(n__isNat.1(M), n__isNat.1(N))), activate.1(IL), M, N)
isNat.0(n__s.1(V1)) → isNat.1(activate.1(V1))
U31.1-0-0-1(tt., IL, M, N) → cons.1-0(activate.1(N), n__take.0-0(activate.0(M), activate.0(IL)))
U11.1-0(tt., L) → s.0(length.0(activate.0(L)))
isNatList.0(n__nil.) → tt.
take.0-0(s.0(M), cons.0-1(N, IL)) → U31.1-1-0-0(and.1-1(isNatIList.1(activate.1(IL)), n__and.1-1(n__isNat.0(M), n__isNat.0(N))), activate.1(IL), M, N)
isNatList.0(n__take.0-1(V1, V2)) → and.1-1(isNat.0(activate.0(V1)), n__isNatIList.1(activate.1(V2)))
activate.0(n__cons.1-0(X1, X2)) → cons.1-0(activate.1(X1), X2)
take.0-0(s.1(M), cons.0-1(N, IL)) → U31.1-1-1-0(and.1-1(isNatIList.1(activate.1(IL)), n__and.1-1(n__isNat.1(M), n__isNat.0(N))), activate.1(IL), M, N)
isNatIList.0(n__zeros.) → tt.
take.0-0(s.0(M), cons.0-0(N, IL)) → U31.1-0-0-0(and.1-1(isNatIList.0(activate.0(IL)), n__and.1-1(n__isNat.0(M), n__isNat.0(N))), activate.0(IL), M, N)
length.0(cons.1-0(N, L)) → U11.1-0(and.1-1(isNatList.0(activate.0(L)), n__isNat.1(N)), activate.0(L))
activate.0(n__length.0(X)) → length.0(activate.0(X))
activate.1(n__and.0-1(X1, X2)) → and.0-1(activate.0(X1), X2)
zeros. → cons.0-0(0., n__zeros.)
isNatIList.0(n__cons.0-0(V1, V2)) → and.1-1(isNat.0(activate.0(V1)), n__isNatIList.0(activate.0(V2)))
take.0-0(s.0(M), cons.1-1(N, IL)) → U31.1-1-0-1(and.1-1(isNatIList.1(activate.1(IL)), n__and.1-1(n__isNat.0(M), n__isNat.1(N))), activate.1(IL), M, N)
take.0-0(s.1(M), cons.0-0(N, IL)) → U31.1-0-1-0(and.1-1(isNatIList.0(activate.0(IL)), n__and.1-1(n__isNat.1(M), n__isNat.0(N))), activate.0(IL), M, N)
activate.0(n__0.) → 0.
activate.1(n__isNatList.1(X)) → isNatList.1(X)
take.0-0(s.1(M), cons.1-0(N, IL)) → U31.1-0-1-1(and.1-1(isNatIList.0(activate.0(IL)), n__and.1-1(n__isNat.1(M), n__isNat.1(N))), activate.0(IL), M, N)
activate.0(n__take.0-0(X1, X2)) → take.0-0(activate.0(X1), activate.0(X2))
isNat.0(n__0.) → tt.
nil. → n__nil.
U11.1-1(tt., L) → s.0(length.1(activate.1(L)))
length.0(cons.0-0(N, L)) → U11.1-0(and.1-1(isNatList.0(activate.0(L)), n__isNat.0(N)), activate.0(L))
activate.1(n__isNat.0(X)) → isNat.0(X)
isNatList.0(X) → n__isNatList.0(X)
isNatIList.0(n__cons.0-1(V1, V2)) → and.1-1(isNat.0(activate.0(V1)), n__isNatIList.1(activate.1(V2)))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].
The following pairs can be oriented strictly and are deleted.
ACTIVATE.1(n__and.1-1(X1, X2)) → ACTIVATE.1(X1)
ACTIVATE.1(n__and.1-1(x0, y1)) → AND.1-1(x0, y1)
ACTIVATE.1(n__and.1-1(n__and.1-1(x0, x1), y1)) → AND.1-1(and.1-1(activate.1(x0), x1), y1)
ACTIVATE.1(n__and.1-1(n__isNat.1(x0), y1)) → AND.1-1(isNat.1(x0), y1)
ACTIVATE.1(n__and.1-1(n__isNat.0(x0), y1)) → AND.1-1(isNat.0(x0), y1)
The remaining pairs can at least be oriented weakly.
ISNATILIST.0(n__cons.0-0(x0, y1)) → AND.1-1(isNat.0(x0), n__isNatIList.0(activate.0(y1)))
AND.1-1(tt., X) → ACTIVATE.1(X)
ISNATLIST.0(n__cons.0-0(n__0., y1)) → AND.1-1(isNat.0(0.), n__isNatList.0(activate.0(y1)))
ISNATLIST.0(n__cons.0-0(x0, y1)) → AND.1-1(isNat.0(x0), n__isNatList.0(activate.0(y1)))
ACTIVATE.1(n__isNatIList.0(X)) → ISNATILIST.0(X)
ISNATILIST.0(n__cons.0-0(n__0., y1)) → AND.1-1(isNat.0(0.), n__isNatIList.0(activate.0(y1)))
ACTIVATE.1(n__isNatList.0(X)) → ISNATLIST.0(X)
Used ordering: Polynomial interpretation [25]:
POL(0.) = 0
POL(ACTIVATE.1(x1)) = x1
POL(AND.1-1(x1, x2)) = x2
POL(ISNATILIST.0(x1)) = 0
POL(ISNATLIST.0(x1)) = 0
POL(U11.1-0(x1, x2)) = 0
POL(U11.1-1(x1, x2)) = 0
POL(U21.1(x1)) = 0
POL(U31.1-0-0-0(x1, x2, x3, x4)) = 0
POL(U31.1-0-0-1(x1, x2, x3, x4)) = 0
POL(U31.1-0-1-0(x1, x2, x3, x4)) = 0
POL(U31.1-0-1-1(x1, x2, x3, x4)) = 0
POL(U31.1-1-0-0(x1, x2, x3, x4)) = 0
POL(U31.1-1-0-1(x1, x2, x3, x4)) = 0
POL(U31.1-1-1-0(x1, x2, x3, x4)) = 0
POL(U31.1-1-1-1(x1, x2, x3, x4)) = 0
POL(activate.0(x1)) = 0
POL(activate.1(x1)) = 0
POL(and.0-0(x1, x2)) = 0
POL(and.0-1(x1, x2)) = 0
POL(and.1-0(x1, x2)) = 0
POL(and.1-1(x1, x2)) = 0
POL(cons.0-0(x1, x2)) = 0
POL(cons.0-1(x1, x2)) = 0
POL(cons.1-0(x1, x2)) = 0
POL(cons.1-1(x1, x2)) = 0
POL(isNat.0(x1)) = 0
POL(isNat.1(x1)) = 0
POL(isNatIList.0(x1)) = 0
POL(isNatIList.1(x1)) = 0
POL(isNatList.0(x1)) = 0
POL(isNatList.1(x1)) = 0
POL(length.0(x1)) = 0
POL(length.1(x1)) = 0
POL(n__0.) = 0
POL(n__and.0-0(x1, x2)) = 0
POL(n__and.0-1(x1, x2)) = 0
POL(n__and.1-0(x1, x2)) = 0
POL(n__and.1-1(x1, x2)) = 1 + x1 + x2
POL(n__cons.0-0(x1, x2)) = 0
POL(n__cons.0-1(x1, x2)) = 0
POL(n__cons.1-0(x1, x2)) = 0
POL(n__cons.1-1(x1, x2)) = 0
POL(n__isNat.0(x1)) = x1
POL(n__isNat.1(x1)) = 0
POL(n__isNatIList.0(x1)) = 0
POL(n__isNatIList.1(x1)) = 0
POL(n__isNatList.0(x1)) = 0
POL(n__isNatList.1(x1)) = 0
POL(n__length.0(x1)) = 0
POL(n__length.1(x1)) = 0
POL(n__nil.) = 0
POL(n__s.0(x1)) = 0
POL(n__s.1(x1)) = 0
POL(n__take.0-0(x1, x2)) = 0
POL(n__take.0-1(x1, x2)) = 0
POL(n__take.1-0(x1, x2)) = 0
POL(n__take.1-1(x1, x2)) = 0
POL(n__zeros.) = 0
POL(nil.) = 0
POL(s.0(x1)) = 0
POL(s.1(x1)) = 0
POL(take.0-0(x1, x2)) = 0
POL(take.0-1(x1, x2)) = 0
POL(take.1-0(x1, x2)) = 0
POL(take.1-1(x1, x2)) = 0
POL(tt.) = 0
POL(zeros.) = 0
The following usable rules [17] were oriented:
none
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ SemLabProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDP
↳ SemLabProof2
↳ QDPOrderProof
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
ISNATILIST.0(n__cons.0-0(x0, y1)) → AND.1-1(isNat.0(x0), n__isNatIList.0(activate.0(y1)))
AND.1-1(tt., X) → ACTIVATE.1(X)
ISNATLIST.0(n__cons.0-0(n__0., y1)) → AND.1-1(isNat.0(0.), n__isNatList.0(activate.0(y1)))
ISNATLIST.0(n__cons.0-0(x0, y1)) → AND.1-1(isNat.0(x0), n__isNatList.0(activate.0(y1)))
ACTIVATE.1(n__isNatIList.0(X)) → ISNATILIST.0(X)
ISNATILIST.0(n__cons.0-0(n__0., y1)) → AND.1-1(isNat.0(0.), n__isNatIList.0(activate.0(y1)))
ACTIVATE.1(n__isNatList.0(X)) → ISNATLIST.0(X)
The TRS R consists of the following rules:
activate.0(n__and.1-0(X1, X2)) → and.1-0(activate.1(X1), X2)
take.0-0(s.0(M), cons.1-0(N, IL)) → U31.1-0-0-1(and.1-1(isNatIList.0(activate.0(IL)), n__and.1-1(n__isNat.0(M), n__isNat.1(N))), activate.0(IL), M, N)
U31.1-0-1-1(tt., IL, M, N) → cons.1-0(activate.1(N), n__take.1-0(activate.1(M), activate.0(IL)))
and.1-0(tt., X) → activate.0(X)
activate.0(n__zeros.) → zeros.
and.0-0(X1, X2) → n__and.0-0(X1, X2)
activate.0(n__s.0(X)) → s.0(activate.0(X))
activate.0(n__take.0-1(X1, X2)) → take.0-1(activate.0(X1), activate.1(X2))
U21.1(tt.) → nil.
activate.1(n__isNat.1(X)) → isNat.1(X)
length.0(X) → n__length.0(X)
isNatList.0(n__take.0-0(V1, V2)) → and.1-1(isNat.0(activate.0(V1)), n__isNatIList.0(activate.0(V2)))
isNat.0(n__s.0(V1)) → isNat.0(activate.0(V1))
cons.1-0(X1, X2) → n__cons.1-0(X1, X2)
and.1-1(X1, X2) → n__and.1-1(X1, X2)
activate.0(n__s.1(X)) → s.1(activate.1(X))
isNat.0(X) → n__isNat.0(X)
activate.0(n__take.1-1(X1, X2)) → take.1-1(activate.1(X1), activate.1(X2))
activate.0(n__and.0-0(X1, X2)) → and.0-0(activate.0(X1), X2)
isNatList.0(n__cons.1-0(V1, V2)) → and.1-1(isNat.1(activate.1(V1)), n__isNatList.0(activate.0(V2)))
isNatIList.0(X) → n__isNatIList.0(X)
length.0(cons.0-1(N, L)) → U11.1-1(and.1-1(isNatList.1(activate.1(L)), n__isNat.0(N)), activate.1(L))
U31.1-1-0-0(tt., IL, M, N) → cons.0-0(activate.0(N), n__take.0-1(activate.0(M), activate.1(IL)))
cons.0-0(X1, X2) → n__cons.0-0(X1, X2)
s.0(X) → n__s.0(X)
U31.1-1-1-0(tt., IL, M, N) → cons.0-0(activate.0(N), n__take.1-1(activate.1(M), activate.1(IL)))
cons.0-1(X1, X2) → n__cons.0-1(X1, X2)
activate.1(n__isNatList.0(X)) → isNatList.0(X)
activate.0(n__cons.0-1(X1, X2)) → cons.0-1(activate.0(X1), X2)
and.0-1(X1, X2) → n__and.0-1(X1, X2)
isNat.0(n__length.1(V1)) → isNatList.1(activate.1(V1))
activate.1(n__isNatIList.1(X)) → isNatIList.1(X)
isNatIList.0(n__cons.1-1(V1, V2)) → and.1-1(isNat.1(activate.1(V1)), n__isNatIList.1(activate.1(V2)))
length.0(cons.1-1(N, L)) → U11.1-1(and.1-1(isNatList.1(activate.1(L)), n__isNat.1(N)), activate.1(L))
isNatIList.1(X) → n__isNatIList.1(X)
take.0-0(X1, X2) → n__take.0-0(X1, X2)
zeros. → n__zeros.
activate.0(n__take.1-0(X1, X2)) → take.1-0(activate.1(X1), activate.0(X2))
length.0(nil.) → 0.
isNat.1(X) → n__isNat.1(X)
activate.1(n__and.1-1(X1, X2)) → and.1-1(activate.1(X1), X2)
activate.0(n__cons.0-0(X1, X2)) → cons.0-0(activate.0(X1), X2)
isNatList.0(n__take.1-0(V1, V2)) → and.1-1(isNat.1(activate.1(V1)), n__isNatIList.0(activate.0(V2)))
take.1-1(X1, X2) → n__take.1-1(X1, X2)
activate.0(n__length.1(X)) → length.1(activate.1(X))
U31.1-0-0-0(tt., IL, M, N) → cons.0-0(activate.0(N), n__take.0-0(activate.0(M), activate.0(IL)))
isNat.0(n__length.0(V1)) → isNatList.0(activate.0(V1))
isNatIList.0(n__cons.1-0(V1, V2)) → and.1-1(isNat.1(activate.1(V1)), n__isNatIList.0(activate.0(V2)))
s.1(X) → n__s.1(X)
isNatList.0(n__cons.0-1(V1, V2)) → and.1-1(isNat.0(activate.0(V1)), n__isNatList.1(activate.1(V2)))
take.1-0(X1, X2) → n__take.1-0(X1, X2)
isNatIList.0(V) → isNatList.0(activate.0(V))
take.0-0(0., IL) → U21.1(isNatIList.0(IL))
activate.1(n__isNatIList.0(X)) → isNatIList.0(X)
isNatList.0(n__cons.0-0(V1, V2)) → and.1-1(isNat.0(activate.0(V1)), n__isNatList.0(activate.0(V2)))
isNatList.0(n__cons.1-1(V1, V2)) → and.1-1(isNat.1(activate.1(V1)), n__isNatList.1(activate.1(V2)))
activate.0(n__cons.1-1(X1, X2)) → cons.1-1(activate.1(X1), X2)
isNatList.0(n__take.1-1(V1, V2)) → and.1-1(isNat.1(activate.1(V1)), n__isNatIList.1(activate.1(V2)))
U31.1-1-0-1(tt., IL, M, N) → cons.1-0(activate.1(N), n__take.0-1(activate.0(M), activate.1(IL)))
isNatList.1(X) → n__isNatList.1(X)
U31.1-1-1-1(tt., IL, M, N) → cons.1-0(activate.1(N), n__take.1-1(activate.1(M), activate.1(IL)))
length.1(X) → n__length.1(X)
cons.1-1(X1, X2) → n__cons.1-1(X1, X2)
take.0-1(X1, X2) → n__take.0-1(X1, X2)
and.1-0(X1, X2) → n__and.1-0(X1, X2)
activate.0(X) → X
activate.0(n__nil.) → nil.
and.1-1(tt., X) → activate.1(X)
isNatIList.1(V) → isNatList.1(activate.1(V))
take.0-1(0., IL) → U21.1(isNatIList.1(IL))
activate.1(X) → X
0. → n__0.
U31.1-0-1-0(tt., IL, M, N) → cons.0-0(activate.0(N), n__take.1-0(activate.1(M), activate.0(IL)))
take.0-0(s.1(M), cons.1-1(N, IL)) → U31.1-1-1-1(and.1-1(isNatIList.1(activate.1(IL)), n__and.1-1(n__isNat.1(M), n__isNat.1(N))), activate.1(IL), M, N)
isNat.0(n__s.1(V1)) → isNat.1(activate.1(V1))
U31.1-0-0-1(tt., IL, M, N) → cons.1-0(activate.1(N), n__take.0-0(activate.0(M), activate.0(IL)))
U11.1-0(tt., L) → s.0(length.0(activate.0(L)))
isNatList.0(n__nil.) → tt.
take.0-0(s.0(M), cons.0-1(N, IL)) → U31.1-1-0-0(and.1-1(isNatIList.1(activate.1(IL)), n__and.1-1(n__isNat.0(M), n__isNat.0(N))), activate.1(IL), M, N)
isNatList.0(n__take.0-1(V1, V2)) → and.1-1(isNat.0(activate.0(V1)), n__isNatIList.1(activate.1(V2)))
activate.0(n__cons.1-0(X1, X2)) → cons.1-0(activate.1(X1), X2)
take.0-0(s.1(M), cons.0-1(N, IL)) → U31.1-1-1-0(and.1-1(isNatIList.1(activate.1(IL)), n__and.1-1(n__isNat.1(M), n__isNat.0(N))), activate.1(IL), M, N)
isNatIList.0(n__zeros.) → tt.
take.0-0(s.0(M), cons.0-0(N, IL)) → U31.1-0-0-0(and.1-1(isNatIList.0(activate.0(IL)), n__and.1-1(n__isNat.0(M), n__isNat.0(N))), activate.0(IL), M, N)
length.0(cons.1-0(N, L)) → U11.1-0(and.1-1(isNatList.0(activate.0(L)), n__isNat.1(N)), activate.0(L))
activate.0(n__length.0(X)) → length.0(activate.0(X))
activate.1(n__and.0-1(X1, X2)) → and.0-1(activate.0(X1), X2)
zeros. → cons.0-0(0., n__zeros.)
isNatIList.0(n__cons.0-0(V1, V2)) → and.1-1(isNat.0(activate.0(V1)), n__isNatIList.0(activate.0(V2)))
take.0-0(s.0(M), cons.1-1(N, IL)) → U31.1-1-0-1(and.1-1(isNatIList.1(activate.1(IL)), n__and.1-1(n__isNat.0(M), n__isNat.1(N))), activate.1(IL), M, N)
take.0-0(s.1(M), cons.0-0(N, IL)) → U31.1-0-1-0(and.1-1(isNatIList.0(activate.0(IL)), n__and.1-1(n__isNat.1(M), n__isNat.0(N))), activate.0(IL), M, N)
activate.0(n__0.) → 0.
activate.1(n__isNatList.1(X)) → isNatList.1(X)
take.0-0(s.1(M), cons.1-0(N, IL)) → U31.1-0-1-1(and.1-1(isNatIList.0(activate.0(IL)), n__and.1-1(n__isNat.1(M), n__isNat.1(N))), activate.0(IL), M, N)
activate.0(n__take.0-0(X1, X2)) → take.0-0(activate.0(X1), activate.0(X2))
isNat.0(n__0.) → tt.
nil. → n__nil.
U11.1-1(tt., L) → s.0(length.1(activate.1(L)))
length.0(cons.0-0(N, L)) → U11.1-0(and.1-1(isNatList.0(activate.0(L)), n__isNat.0(N)), activate.0(L))
activate.1(n__isNat.0(X)) → isNat.0(X)
isNatList.0(X) → n__isNatList.0(X)
isNatIList.0(n__cons.0-1(V1, V2)) → and.1-1(isNat.0(activate.0(V1)), n__isNatIList.1(activate.1(V2)))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ SemLabProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesReductionPairsProof
↳ SemLabProof2
↳ QDPOrderProof
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
ACTIVATE.0(n__s.0(X)) → ACTIVATE.0(X)
The TRS R consists of the following rules:
activate.0(n__and.1-0(X1, X2)) → and.1-0(activate.1(X1), X2)
take.0-0(s.0(M), cons.1-0(N, IL)) → U31.1-0-0-1(and.1-1(isNatIList.0(activate.0(IL)), n__and.1-1(n__isNat.0(M), n__isNat.1(N))), activate.0(IL), M, N)
U31.1-0-1-1(tt., IL, M, N) → cons.1-0(activate.1(N), n__take.1-0(activate.1(M), activate.0(IL)))
and.1-0(tt., X) → activate.0(X)
activate.0(n__zeros.) → zeros.
and.0-0(X1, X2) → n__and.0-0(X1, X2)
activate.0(n__s.0(X)) → s.0(activate.0(X))
activate.0(n__take.0-1(X1, X2)) → take.0-1(activate.0(X1), activate.1(X2))
U21.1(tt.) → nil.
activate.1(n__isNat.1(X)) → isNat.1(X)
length.0(X) → n__length.0(X)
isNatList.0(n__take.0-0(V1, V2)) → and.1-1(isNat.0(activate.0(V1)), n__isNatIList.0(activate.0(V2)))
isNat.0(n__s.0(V1)) → isNat.0(activate.0(V1))
cons.1-0(X1, X2) → n__cons.1-0(X1, X2)
and.1-1(X1, X2) → n__and.1-1(X1, X2)
activate.0(n__s.1(X)) → s.1(activate.1(X))
isNat.0(X) → n__isNat.0(X)
activate.0(n__take.1-1(X1, X2)) → take.1-1(activate.1(X1), activate.1(X2))
activate.0(n__and.0-0(X1, X2)) → and.0-0(activate.0(X1), X2)
isNatList.0(n__cons.1-0(V1, V2)) → and.1-1(isNat.1(activate.1(V1)), n__isNatList.0(activate.0(V2)))
isNatIList.0(X) → n__isNatIList.0(X)
length.0(cons.0-1(N, L)) → U11.1-1(and.1-1(isNatList.1(activate.1(L)), n__isNat.0(N)), activate.1(L))
U31.1-1-0-0(tt., IL, M, N) → cons.0-0(activate.0(N), n__take.0-1(activate.0(M), activate.1(IL)))
cons.0-0(X1, X2) → n__cons.0-0(X1, X2)
s.0(X) → n__s.0(X)
U31.1-1-1-0(tt., IL, M, N) → cons.0-0(activate.0(N), n__take.1-1(activate.1(M), activate.1(IL)))
cons.0-1(X1, X2) → n__cons.0-1(X1, X2)
activate.1(n__isNatList.0(X)) → isNatList.0(X)
activate.0(n__cons.0-1(X1, X2)) → cons.0-1(activate.0(X1), X2)
and.0-1(X1, X2) → n__and.0-1(X1, X2)
isNat.0(n__length.1(V1)) → isNatList.1(activate.1(V1))
activate.1(n__isNatIList.1(X)) → isNatIList.1(X)
isNatIList.0(n__cons.1-1(V1, V2)) → and.1-1(isNat.1(activate.1(V1)), n__isNatIList.1(activate.1(V2)))
length.0(cons.1-1(N, L)) → U11.1-1(and.1-1(isNatList.1(activate.1(L)), n__isNat.1(N)), activate.1(L))
isNatIList.1(X) → n__isNatIList.1(X)
take.0-0(X1, X2) → n__take.0-0(X1, X2)
zeros. → n__zeros.
activate.0(n__take.1-0(X1, X2)) → take.1-0(activate.1(X1), activate.0(X2))
length.0(nil.) → 0.
isNat.1(X) → n__isNat.1(X)
activate.1(n__and.1-1(X1, X2)) → and.1-1(activate.1(X1), X2)
activate.0(n__cons.0-0(X1, X2)) → cons.0-0(activate.0(X1), X2)
isNatList.0(n__take.1-0(V1, V2)) → and.1-1(isNat.1(activate.1(V1)), n__isNatIList.0(activate.0(V2)))
take.1-1(X1, X2) → n__take.1-1(X1, X2)
activate.0(n__length.1(X)) → length.1(activate.1(X))
U31.1-0-0-0(tt., IL, M, N) → cons.0-0(activate.0(N), n__take.0-0(activate.0(M), activate.0(IL)))
isNat.0(n__length.0(V1)) → isNatList.0(activate.0(V1))
isNatIList.0(n__cons.1-0(V1, V2)) → and.1-1(isNat.1(activate.1(V1)), n__isNatIList.0(activate.0(V2)))
s.1(X) → n__s.1(X)
isNatList.0(n__cons.0-1(V1, V2)) → and.1-1(isNat.0(activate.0(V1)), n__isNatList.1(activate.1(V2)))
take.1-0(X1, X2) → n__take.1-0(X1, X2)
isNatIList.0(V) → isNatList.0(activate.0(V))
take.0-0(0., IL) → U21.1(isNatIList.0(IL))
activate.1(n__isNatIList.0(X)) → isNatIList.0(X)
isNatList.0(n__cons.0-0(V1, V2)) → and.1-1(isNat.0(activate.0(V1)), n__isNatList.0(activate.0(V2)))
isNatList.0(n__cons.1-1(V1, V2)) → and.1-1(isNat.1(activate.1(V1)), n__isNatList.1(activate.1(V2)))
activate.0(n__cons.1-1(X1, X2)) → cons.1-1(activate.1(X1), X2)
isNatList.0(n__take.1-1(V1, V2)) → and.1-1(isNat.1(activate.1(V1)), n__isNatIList.1(activate.1(V2)))
U31.1-1-0-1(tt., IL, M, N) → cons.1-0(activate.1(N), n__take.0-1(activate.0(M), activate.1(IL)))
isNatList.1(X) → n__isNatList.1(X)
U31.1-1-1-1(tt., IL, M, N) → cons.1-0(activate.1(N), n__take.1-1(activate.1(M), activate.1(IL)))
length.1(X) → n__length.1(X)
cons.1-1(X1, X2) → n__cons.1-1(X1, X2)
take.0-1(X1, X2) → n__take.0-1(X1, X2)
and.1-0(X1, X2) → n__and.1-0(X1, X2)
activate.0(X) → X
activate.0(n__nil.) → nil.
and.1-1(tt., X) → activate.1(X)
isNatIList.1(V) → isNatList.1(activate.1(V))
take.0-1(0., IL) → U21.1(isNatIList.1(IL))
activate.1(X) → X
0. → n__0.
U31.1-0-1-0(tt., IL, M, N) → cons.0-0(activate.0(N), n__take.1-0(activate.1(M), activate.0(IL)))
take.0-0(s.1(M), cons.1-1(N, IL)) → U31.1-1-1-1(and.1-1(isNatIList.1(activate.1(IL)), n__and.1-1(n__isNat.1(M), n__isNat.1(N))), activate.1(IL), M, N)
isNat.0(n__s.1(V1)) → isNat.1(activate.1(V1))
U31.1-0-0-1(tt., IL, M, N) → cons.1-0(activate.1(N), n__take.0-0(activate.0(M), activate.0(IL)))
U11.1-0(tt., L) → s.0(length.0(activate.0(L)))
isNatList.0(n__nil.) → tt.
take.0-0(s.0(M), cons.0-1(N, IL)) → U31.1-1-0-0(and.1-1(isNatIList.1(activate.1(IL)), n__and.1-1(n__isNat.0(M), n__isNat.0(N))), activate.1(IL), M, N)
isNatList.0(n__take.0-1(V1, V2)) → and.1-1(isNat.0(activate.0(V1)), n__isNatIList.1(activate.1(V2)))
activate.0(n__cons.1-0(X1, X2)) → cons.1-0(activate.1(X1), X2)
take.0-0(s.1(M), cons.0-1(N, IL)) → U31.1-1-1-0(and.1-1(isNatIList.1(activate.1(IL)), n__and.1-1(n__isNat.1(M), n__isNat.0(N))), activate.1(IL), M, N)
isNatIList.0(n__zeros.) → tt.
take.0-0(s.0(M), cons.0-0(N, IL)) → U31.1-0-0-0(and.1-1(isNatIList.0(activate.0(IL)), n__and.1-1(n__isNat.0(M), n__isNat.0(N))), activate.0(IL), M, N)
length.0(cons.1-0(N, L)) → U11.1-0(and.1-1(isNatList.0(activate.0(L)), n__isNat.1(N)), activate.0(L))
activate.0(n__length.0(X)) → length.0(activate.0(X))
activate.1(n__and.0-1(X1, X2)) → and.0-1(activate.0(X1), X2)
zeros. → cons.0-0(0., n__zeros.)
isNatIList.0(n__cons.0-0(V1, V2)) → and.1-1(isNat.0(activate.0(V1)), n__isNatIList.0(activate.0(V2)))
take.0-0(s.0(M), cons.1-1(N, IL)) → U31.1-1-0-1(and.1-1(isNatIList.1(activate.1(IL)), n__and.1-1(n__isNat.0(M), n__isNat.1(N))), activate.1(IL), M, N)
take.0-0(s.1(M), cons.0-0(N, IL)) → U31.1-0-1-0(and.1-1(isNatIList.0(activate.0(IL)), n__and.1-1(n__isNat.1(M), n__isNat.0(N))), activate.0(IL), M, N)
activate.0(n__0.) → 0.
activate.1(n__isNatList.1(X)) → isNatList.1(X)
take.0-0(s.1(M), cons.1-0(N, IL)) → U31.1-0-1-1(and.1-1(isNatIList.0(activate.0(IL)), n__and.1-1(n__isNat.1(M), n__isNat.1(N))), activate.0(IL), M, N)
activate.0(n__take.0-0(X1, X2)) → take.0-0(activate.0(X1), activate.0(X2))
isNat.0(n__0.) → tt.
nil. → n__nil.
U11.1-1(tt., L) → s.0(length.1(activate.1(L)))
length.0(cons.0-0(N, L)) → U11.1-0(and.1-1(isNatList.0(activate.0(L)), n__isNat.0(N)), activate.0(L))
activate.1(n__isNat.0(X)) → isNat.0(X)
isNatList.0(X) → n__isNatList.0(X)
isNatIList.0(n__cons.0-1(V1, V2)) → and.1-1(isNat.0(activate.0(V1)), n__isNatIList.1(activate.1(V2)))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the usable rules with reduction pair processor [15] with a polynomial ordering [25], all dependency pairs and the corresponding usable rules [17] can be oriented non-strictly. All non-usable rules are removed, and those dependency pairs and usable rules that have been oriented strictly or contain non-usable symbols in their left-hand side are removed as well.
The following dependency pairs can be deleted:
ACTIVATE.0(n__s.0(X)) → ACTIVATE.0(X)
No rules are removed from R.
Used ordering: POLO with Polynomial interpretation [25]:
POL(ACTIVATE.0(x1)) = x1
POL(n__s.0(x1)) = x1
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ SemLabProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesReductionPairsProof
↳ QDP
↳ PisEmptyProof
↳ SemLabProof2
↳ QDPOrderProof
↳ QDP
Q DP problem:
P is empty.
R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.
As can be seen after transforming the QDP problem by semantic labelling [33] and then some rule deleting processors, only certain labelled rules and pairs can be used.
Hence, we only have to consider all unlabelled pairs and rules (without the decreasing rules for quasi-models).
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ SemLabProof
↳ SemLabProof2
↳ QDP
↳ DependencyGraphProof
↳ QDPOrderProof
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
ISNAT(n__s(n__s(x0))) → ISNAT(s(activate(x0)))
ACTIVATE(n__isNatList(X)) → ISNATLIST(X)
ISNATILIST(n__cons(x0, y1)) → AND(isNat(x0), n__isNatIList(activate(y1)))
ISNAT(n__s(n__and(x0, x1))) → ISNAT(and(activate(x0), x1))
ISNATLIST(n__cons(x0, y1)) → AND(isNat(x0), n__isNatList(activate(y1)))
ISNATILIST(n__cons(n__0, y1)) → AND(isNat(0), n__isNatIList(activate(y1)))
ACTIVATE(n__isNatIList(X)) → ISNATILIST(X)
ISNATLIST(n__cons(n__0, y1)) → AND(isNat(0), n__isNatList(activate(y1)))
ISNAT(n__s(n__length(x0))) → ISNAT(length(activate(x0)))
ISNAT(n__s(x0)) → ISNAT(x0)
AND(tt, X) → ACTIVATE(X)
The TRS R consists of the following rules:
zeros → cons(0, n__zeros)
U11(tt, L) → s(length(activate(L)))
U21(tt) → nil
U31(tt, IL, M, N) → cons(activate(N), n__take(activate(M), activate(IL)))
and(tt, X) → activate(X)
isNat(n__0) → tt
isNat(n__length(V1)) → isNatList(activate(V1))
isNat(n__s(V1)) → isNat(activate(V1))
isNatIList(V) → isNatList(activate(V))
isNatIList(n__zeros) → tt
isNatIList(n__cons(V1, V2)) → and(isNat(activate(V1)), n__isNatIList(activate(V2)))
isNatList(n__nil) → tt
isNatList(n__cons(V1, V2)) → and(isNat(activate(V1)), n__isNatList(activate(V2)))
isNatList(n__take(V1, V2)) → and(isNat(activate(V1)), n__isNatIList(activate(V2)))
length(nil) → 0
length(cons(N, L)) → U11(and(isNatList(activate(L)), n__isNat(N)), activate(L))
take(0, IL) → U21(isNatIList(IL))
take(s(M), cons(N, IL)) → U31(and(isNatIList(activate(IL)), n__and(n__isNat(M), n__isNat(N))), activate(IL), M, N)
zeros → n__zeros
take(X1, X2) → n__take(X1, X2)
0 → n__0
length(X) → n__length(X)
s(X) → n__s(X)
cons(X1, X2) → n__cons(X1, X2)
isNatIList(X) → n__isNatIList(X)
nil → n__nil
isNatList(X) → n__isNatList(X)
isNat(X) → n__isNat(X)
and(X1, X2) → n__and(X1, X2)
activate(n__zeros) → zeros
activate(n__take(X1, X2)) → take(activate(X1), activate(X2))
activate(n__0) → 0
activate(n__length(X)) → length(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(n__isNatIList(X)) → isNatIList(X)
activate(n__nil) → nil
activate(n__isNatList(X)) → isNatList(X)
activate(n__isNat(X)) → isNat(X)
activate(n__and(X1, X2)) → and(activate(X1), X2)
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 2 SCCs.
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ SemLabProof
↳ SemLabProof2
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ Instantiation
↳ QDP
↳ QDPOrderProof
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
ACTIVATE(n__isNatList(X)) → ISNATLIST(X)
ISNATILIST(n__cons(x0, y1)) → AND(isNat(x0), n__isNatIList(activate(y1)))
ISNATLIST(n__cons(x0, y1)) → AND(isNat(x0), n__isNatList(activate(y1)))
ISNATLIST(n__cons(n__0, y1)) → AND(isNat(0), n__isNatList(activate(y1)))
ISNATILIST(n__cons(n__0, y1)) → AND(isNat(0), n__isNatIList(activate(y1)))
ACTIVATE(n__isNatIList(X)) → ISNATILIST(X)
AND(tt, X) → ACTIVATE(X)
The TRS R consists of the following rules:
zeros → cons(0, n__zeros)
U11(tt, L) → s(length(activate(L)))
U21(tt) → nil
U31(tt, IL, M, N) → cons(activate(N), n__take(activate(M), activate(IL)))
and(tt, X) → activate(X)
isNat(n__0) → tt
isNat(n__length(V1)) → isNatList(activate(V1))
isNat(n__s(V1)) → isNat(activate(V1))
isNatIList(V) → isNatList(activate(V))
isNatIList(n__zeros) → tt
isNatIList(n__cons(V1, V2)) → and(isNat(activate(V1)), n__isNatIList(activate(V2)))
isNatList(n__nil) → tt
isNatList(n__cons(V1, V2)) → and(isNat(activate(V1)), n__isNatList(activate(V2)))
isNatList(n__take(V1, V2)) → and(isNat(activate(V1)), n__isNatIList(activate(V2)))
length(nil) → 0
length(cons(N, L)) → U11(and(isNatList(activate(L)), n__isNat(N)), activate(L))
take(0, IL) → U21(isNatIList(IL))
take(s(M), cons(N, IL)) → U31(and(isNatIList(activate(IL)), n__and(n__isNat(M), n__isNat(N))), activate(IL), M, N)
zeros → n__zeros
take(X1, X2) → n__take(X1, X2)
0 → n__0
length(X) → n__length(X)
s(X) → n__s(X)
cons(X1, X2) → n__cons(X1, X2)
isNatIList(X) → n__isNatIList(X)
nil → n__nil
isNatList(X) → n__isNatList(X)
isNat(X) → n__isNat(X)
and(X1, X2) → n__and(X1, X2)
activate(n__zeros) → zeros
activate(n__take(X1, X2)) → take(activate(X1), activate(X2))
activate(n__0) → 0
activate(n__length(X)) → length(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(n__isNatIList(X)) → isNatIList(X)
activate(n__nil) → nil
activate(n__isNatList(X)) → isNatList(X)
activate(n__isNat(X)) → isNat(X)
activate(n__and(X1, X2)) → and(activate(X1), X2)
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By instantiating [15] the rule AND(tt, X) → ACTIVATE(X) we obtained the following new rules:
AND(tt, n__isNatIList(y_3)) → ACTIVATE(n__isNatIList(y_3))
AND(tt, n__isNatList(y_3)) → ACTIVATE(n__isNatList(y_3))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ SemLabProof
↳ SemLabProof2
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ Instantiation
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
ISNATILIST(n__cons(x0, y1)) → AND(isNat(x0), n__isNatIList(activate(y1)))
ACTIVATE(n__isNatList(X)) → ISNATLIST(X)
AND(tt, n__isNatIList(y_3)) → ACTIVATE(n__isNatIList(y_3))
ISNATLIST(n__cons(x0, y1)) → AND(isNat(x0), n__isNatList(activate(y1)))
ACTIVATE(n__isNatIList(X)) → ISNATILIST(X)
ISNATILIST(n__cons(n__0, y1)) → AND(isNat(0), n__isNatIList(activate(y1)))
ISNATLIST(n__cons(n__0, y1)) → AND(isNat(0), n__isNatList(activate(y1)))
AND(tt, n__isNatList(y_3)) → ACTIVATE(n__isNatList(y_3))
The TRS R consists of the following rules:
zeros → cons(0, n__zeros)
U11(tt, L) → s(length(activate(L)))
U21(tt) → nil
U31(tt, IL, M, N) → cons(activate(N), n__take(activate(M), activate(IL)))
and(tt, X) → activate(X)
isNat(n__0) → tt
isNat(n__length(V1)) → isNatList(activate(V1))
isNat(n__s(V1)) → isNat(activate(V1))
isNatIList(V) → isNatList(activate(V))
isNatIList(n__zeros) → tt
isNatIList(n__cons(V1, V2)) → and(isNat(activate(V1)), n__isNatIList(activate(V2)))
isNatList(n__nil) → tt
isNatList(n__cons(V1, V2)) → and(isNat(activate(V1)), n__isNatList(activate(V2)))
isNatList(n__take(V1, V2)) → and(isNat(activate(V1)), n__isNatIList(activate(V2)))
length(nil) → 0
length(cons(N, L)) → U11(and(isNatList(activate(L)), n__isNat(N)), activate(L))
take(0, IL) → U21(isNatIList(IL))
take(s(M), cons(N, IL)) → U31(and(isNatIList(activate(IL)), n__and(n__isNat(M), n__isNat(N))), activate(IL), M, N)
zeros → n__zeros
take(X1, X2) → n__take(X1, X2)
0 → n__0
length(X) → n__length(X)
s(X) → n__s(X)
cons(X1, X2) → n__cons(X1, X2)
isNatIList(X) → n__isNatIList(X)
nil → n__nil
isNatList(X) → n__isNatList(X)
isNat(X) → n__isNat(X)
and(X1, X2) → n__and(X1, X2)
activate(n__zeros) → zeros
activate(n__take(X1, X2)) → take(activate(X1), activate(X2))
activate(n__0) → 0
activate(n__length(X)) → length(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(n__isNatIList(X)) → isNatIList(X)
activate(n__nil) → nil
activate(n__isNatList(X)) → isNatList(X)
activate(n__isNat(X)) → isNat(X)
activate(n__and(X1, X2)) → and(activate(X1), X2)
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 2 SCCs.
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ SemLabProof
↳ SemLabProof2
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ Instantiation
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
ACTIVATE(n__isNatList(X)) → ISNATLIST(X)
ISNATLIST(n__cons(x0, y1)) → AND(isNat(x0), n__isNatList(activate(y1)))
ISNATLIST(n__cons(n__0, y1)) → AND(isNat(0), n__isNatList(activate(y1)))
AND(tt, n__isNatList(y_3)) → ACTIVATE(n__isNatList(y_3))
The TRS R consists of the following rules:
zeros → cons(0, n__zeros)
U11(tt, L) → s(length(activate(L)))
U21(tt) → nil
U31(tt, IL, M, N) → cons(activate(N), n__take(activate(M), activate(IL)))
and(tt, X) → activate(X)
isNat(n__0) → tt
isNat(n__length(V1)) → isNatList(activate(V1))
isNat(n__s(V1)) → isNat(activate(V1))
isNatIList(V) → isNatList(activate(V))
isNatIList(n__zeros) → tt
isNatIList(n__cons(V1, V2)) → and(isNat(activate(V1)), n__isNatIList(activate(V2)))
isNatList(n__nil) → tt
isNatList(n__cons(V1, V2)) → and(isNat(activate(V1)), n__isNatList(activate(V2)))
isNatList(n__take(V1, V2)) → and(isNat(activate(V1)), n__isNatIList(activate(V2)))
length(nil) → 0
length(cons(N, L)) → U11(and(isNatList(activate(L)), n__isNat(N)), activate(L))
take(0, IL) → U21(isNatIList(IL))
take(s(M), cons(N, IL)) → U31(and(isNatIList(activate(IL)), n__and(n__isNat(M), n__isNat(N))), activate(IL), M, N)
zeros → n__zeros
take(X1, X2) → n__take(X1, X2)
0 → n__0
length(X) → n__length(X)
s(X) → n__s(X)
cons(X1, X2) → n__cons(X1, X2)
isNatIList(X) → n__isNatIList(X)
nil → n__nil
isNatList(X) → n__isNatList(X)
isNat(X) → n__isNat(X)
and(X1, X2) → n__and(X1, X2)
activate(n__zeros) → zeros
activate(n__take(X1, X2)) → take(activate(X1), activate(X2))
activate(n__0) → 0
activate(n__length(X)) → length(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(n__isNatIList(X)) → isNatIList(X)
activate(n__nil) → nil
activate(n__isNatList(X)) → isNatList(X)
activate(n__isNat(X)) → isNat(X)
activate(n__and(X1, X2)) → and(activate(X1), X2)
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ SemLabProof
↳ SemLabProof2
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ Instantiation
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
ISNATILIST(n__cons(x0, y1)) → AND(isNat(x0), n__isNatIList(activate(y1)))
AND(tt, n__isNatIList(y_3)) → ACTIVATE(n__isNatIList(y_3))
ISNATILIST(n__cons(n__0, y1)) → AND(isNat(0), n__isNatIList(activate(y1)))
ACTIVATE(n__isNatIList(X)) → ISNATILIST(X)
The TRS R consists of the following rules:
zeros → cons(0, n__zeros)
U11(tt, L) → s(length(activate(L)))
U21(tt) → nil
U31(tt, IL, M, N) → cons(activate(N), n__take(activate(M), activate(IL)))
and(tt, X) → activate(X)
isNat(n__0) → tt
isNat(n__length(V1)) → isNatList(activate(V1))
isNat(n__s(V1)) → isNat(activate(V1))
isNatIList(V) → isNatList(activate(V))
isNatIList(n__zeros) → tt
isNatIList(n__cons(V1, V2)) → and(isNat(activate(V1)), n__isNatIList(activate(V2)))
isNatList(n__nil) → tt
isNatList(n__cons(V1, V2)) → and(isNat(activate(V1)), n__isNatList(activate(V2)))
isNatList(n__take(V1, V2)) → and(isNat(activate(V1)), n__isNatIList(activate(V2)))
length(nil) → 0
length(cons(N, L)) → U11(and(isNatList(activate(L)), n__isNat(N)), activate(L))
take(0, IL) → U21(isNatIList(IL))
take(s(M), cons(N, IL)) → U31(and(isNatIList(activate(IL)), n__and(n__isNat(M), n__isNat(N))), activate(IL), M, N)
zeros → n__zeros
take(X1, X2) → n__take(X1, X2)
0 → n__0
length(X) → n__length(X)
s(X) → n__s(X)
cons(X1, X2) → n__cons(X1, X2)
isNatIList(X) → n__isNatIList(X)
nil → n__nil
isNatList(X) → n__isNatList(X)
isNat(X) → n__isNat(X)
and(X1, X2) → n__and(X1, X2)
activate(n__zeros) → zeros
activate(n__take(X1, X2)) → take(activate(X1), activate(X2))
activate(n__0) → 0
activate(n__length(X)) → length(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(n__isNatIList(X)) → isNatIList(X)
activate(n__nil) → nil
activate(n__isNatList(X)) → isNatList(X)
activate(n__isNat(X)) → isNat(X)
activate(n__and(X1, X2)) → and(activate(X1), X2)
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ SemLabProof
↳ SemLabProof2
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
ISNAT(n__s(n__s(x0))) → ISNAT(s(activate(x0)))
ISNAT(n__s(n__and(x0, x1))) → ISNAT(and(activate(x0), x1))
ISNAT(n__s(n__length(x0))) → ISNAT(length(activate(x0)))
ISNAT(n__s(x0)) → ISNAT(x0)
The TRS R consists of the following rules:
zeros → cons(0, n__zeros)
U11(tt, L) → s(length(activate(L)))
U21(tt) → nil
U31(tt, IL, M, N) → cons(activate(N), n__take(activate(M), activate(IL)))
and(tt, X) → activate(X)
isNat(n__0) → tt
isNat(n__length(V1)) → isNatList(activate(V1))
isNat(n__s(V1)) → isNat(activate(V1))
isNatIList(V) → isNatList(activate(V))
isNatIList(n__zeros) → tt
isNatIList(n__cons(V1, V2)) → and(isNat(activate(V1)), n__isNatIList(activate(V2)))
isNatList(n__nil) → tt
isNatList(n__cons(V1, V2)) → and(isNat(activate(V1)), n__isNatList(activate(V2)))
isNatList(n__take(V1, V2)) → and(isNat(activate(V1)), n__isNatIList(activate(V2)))
length(nil) → 0
length(cons(N, L)) → U11(and(isNatList(activate(L)), n__isNat(N)), activate(L))
take(0, IL) → U21(isNatIList(IL))
take(s(M), cons(N, IL)) → U31(and(isNatIList(activate(IL)), n__and(n__isNat(M), n__isNat(N))), activate(IL), M, N)
zeros → n__zeros
take(X1, X2) → n__take(X1, X2)
0 → n__0
length(X) → n__length(X)
s(X) → n__s(X)
cons(X1, X2) → n__cons(X1, X2)
isNatIList(X) → n__isNatIList(X)
nil → n__nil
isNatList(X) → n__isNatList(X)
isNat(X) → n__isNat(X)
and(X1, X2) → n__and(X1, X2)
activate(n__zeros) → zeros
activate(n__take(X1, X2)) → take(activate(X1), activate(X2))
activate(n__0) → 0
activate(n__length(X)) → length(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(n__isNatIList(X)) → isNatIList(X)
activate(n__nil) → nil
activate(n__isNatList(X)) → isNatList(X)
activate(n__isNat(X)) → isNat(X)
activate(n__and(X1, X2)) → and(activate(X1), X2)
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].
The following pairs can be oriented strictly and are deleted.
ISNATILIST(n__cons(n__zeros, y1)) → AND(isNat(zeros), n__isNatIList(activate(y1)))
ISNATLIST(n__cons(n__zeros, y1)) → AND(isNat(zeros), n__isNatList(activate(y1)))
The remaining pairs can at least be oriented weakly.
ISNATLIST(n__cons(n__take(x0, x1), y1)) → AND(isNat(take(activate(x0), activate(x1))), n__isNatList(activate(y1)))
ISNAT(n__s(n__s(x0))) → ISNAT(s(activate(x0)))
ACTIVATE(n__and(n__isNatList(x0), y1)) → AND(isNatList(x0), y1)
ISNATLIST(n__cons(n__and(x0, x1), y1)) → AND(isNat(and(activate(x0), x1)), n__isNatList(activate(y1)))
ISNATLIST(n__cons(x0, y1)) → AND(isNat(x0), n__isNatList(activate(y1)))
ISNATLIST(n__cons(n__0, y1)) → AND(isNat(0), n__isNatList(activate(y1)))
ISNATILIST(n__cons(n__cons(x0, x1), y1)) → AND(isNat(cons(activate(x0), x1)), n__isNatIList(activate(y1)))
ACTIVATE(n__s(X)) → ACTIVATE(X)
ISNATLIST(n__cons(n__isNatList(x0), y1)) → AND(isNat(isNatList(x0)), n__isNatList(activate(y1)))
ISNATLIST(n__cons(n__s(x0), y1)) → AND(isNat(s(activate(x0))), n__isNatList(activate(y1)))
ACTIVATE(n__and(n__take(x0, x1), y1)) → AND(take(activate(x0), activate(x1)), y1)
ISNAT(n__s(n__isNat(x0))) → ISNAT(isNat(x0))
ISNATILIST(n__cons(n__length(x0), y1)) → AND(isNat(length(activate(x0))), n__isNatIList(activate(y1)))
ACTIVATE(n__and(n__s(x0), y1)) → AND(s(activate(x0)), y1)
ISNAT(n__s(V1)) → ACTIVATE(V1)
AND(tt, X) → ACTIVATE(X)
ISNATILIST(n__cons(n__nil, y1)) → AND(isNat(nil), n__isNatIList(activate(y1)))
ISNATILIST(n__cons(n__s(x0), y1)) → AND(isNat(s(activate(x0))), n__isNatIList(activate(y1)))
ISNATILIST(n__cons(n__isNatIList(x0), y1)) → AND(isNat(isNatIList(x0)), n__isNatIList(activate(y1)))
ACTIVATE(n__and(x0, y1)) → AND(x0, y1)
ISNATILIST(n__cons(x0, y1)) → AND(isNat(x0), n__isNatIList(activate(y1)))
ISNAT(n__s(n__and(x0, x1))) → ISNAT(and(activate(x0), x1))
ISNAT(n__s(n__take(x0, x1))) → ISNAT(take(activate(x0), activate(x1)))
ISNATILIST(n__cons(n__isNat(x0), y1)) → AND(isNat(isNat(x0)), n__isNatIList(activate(y1)))
ACTIVATE(n__isNatIList(X)) → ISNATILIST(X)
ISNAT(n__s(n__length(x0))) → ISNAT(length(activate(x0)))
ISNATILIST(n__cons(n__take(x0, x1), y1)) → AND(isNat(take(activate(x0), activate(x1))), n__isNatIList(activate(y1)))
ISNATLIST(n__cons(n__length(x0), y1)) → AND(isNat(length(activate(x0))), n__isNatList(activate(y1)))
ISNATILIST(n__cons(n__isNatList(x0), y1)) → AND(isNat(isNatList(x0)), n__isNatIList(activate(y1)))
ACTIVATE(n__and(n__length(x0), y1)) → AND(length(activate(x0)), y1)
ACTIVATE(n__and(n__and(x0, x1), y1)) → AND(and(activate(x0), x1), y1)
ACTIVATE(n__and(X1, X2)) → ACTIVATE(X1)
ACTIVATE(n__isNatList(X)) → ISNATLIST(X)
ACTIVATE(n__and(n__isNat(x0), y1)) → AND(isNat(x0), y1)
ISNATLIST(n__cons(n__isNatIList(x0), y1)) → AND(isNat(isNatIList(x0)), n__isNatList(activate(y1)))
ISNATILIST(n__cons(n__and(x0, x1), y1)) → AND(isNat(and(activate(x0), x1)), n__isNatIList(activate(y1)))
ISNATLIST(n__cons(n__isNat(x0), y1)) → AND(isNat(isNat(x0)), n__isNatList(activate(y1)))
ACTIVATE(n__and(n__cons(x0, x1), y1)) → AND(cons(activate(x0), x1), y1)
ISNAT(n__s(n__isNatIList(x0))) → ISNAT(isNatIList(x0))
ISNAT(n__s(n__cons(x0, x1))) → ISNAT(cons(activate(x0), x1))
ISNAT(n__s(n__isNatList(x0))) → ISNAT(isNatList(x0))
ISNATLIST(n__cons(n__cons(x0, x1), y1)) → AND(isNat(cons(activate(x0), x1)), n__isNatList(activate(y1)))
ACTIVATE(n__isNat(X)) → ISNAT(X)
ISNATLIST(n__cons(n__nil, y1)) → AND(isNat(nil), n__isNatList(activate(y1)))
ISNATILIST(n__cons(n__0, y1)) → AND(isNat(0), n__isNatIList(activate(y1)))
ACTIVATE(n__and(n__isNatIList(x0), y1)) → AND(isNatIList(x0), y1)
ISNAT(n__s(x0)) → ISNAT(x0)
Used ordering: Polynomial interpretation [25]:
POL(0) = 0
POL(ACTIVATE(x1)) = x1
POL(AND(x1, x2)) = x2
POL(ISNAT(x1)) = x1
POL(ISNATILIST(x1)) = x1
POL(ISNATLIST(x1)) = x1
POL(U11(x1, x2)) = x2
POL(U21(x1)) = 0
POL(U31(x1, x2, x3, x4)) = x2 + x3 + x4
POL(activate(x1)) = x1
POL(and(x1, x2)) = x1 + x2
POL(cons(x1, x2)) = x1 + x2
POL(isNat(x1)) = x1
POL(isNatIList(x1)) = x1
POL(isNatList(x1)) = x1
POL(length(x1)) = x1
POL(n__0) = 0
POL(n__and(x1, x2)) = x1 + x2
POL(n__cons(x1, x2)) = x1 + x2
POL(n__isNat(x1)) = x1
POL(n__isNatIList(x1)) = x1
POL(n__isNatList(x1)) = x1
POL(n__length(x1)) = x1
POL(n__nil) = 0
POL(n__s(x1)) = x1
POL(n__take(x1, x2)) = x1 + x2
POL(n__zeros) = 1
POL(nil) = 0
POL(s(x1)) = x1
POL(take(x1, x2)) = x1 + x2
POL(tt) = 0
POL(zeros) = 1
The following usable rules [17] were oriented:
isNatIList(X) → n__isNatIList(X)
cons(X1, X2) → n__cons(X1, X2)
isNatList(X) → n__isNatList(X)
nil → n__nil
and(X1, X2) → n__and(X1, X2)
isNat(X) → n__isNat(X)
activate(n__take(X1, X2)) → take(activate(X1), activate(X2))
activate(n__zeros) → zeros
take(0, IL) → U21(isNatIList(IL))
length(cons(N, L)) → U11(and(isNatList(activate(L)), n__isNat(N)), activate(L))
zeros → n__zeros
take(s(M), cons(N, IL)) → U31(and(isNatIList(activate(IL)), n__and(n__isNat(M), n__isNat(N))), activate(IL), M, N)
0 → n__0
take(X1, X2) → n__take(X1, X2)
s(X) → n__s(X)
length(X) → n__length(X)
activate(X) → X
activate(n__0) → 0
activate(n__length(X)) → length(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
isNatList(n__cons(V1, V2)) → and(isNat(activate(V1)), n__isNatList(activate(V2)))
isNatIList(V) → isNatList(activate(V))
activate(n__isNat(X)) → isNat(X)
activate(n__and(X1, X2)) → and(activate(X1), X2)
isNat(n__s(V1)) → isNat(activate(V1))
and(tt, X) → activate(X)
isNatIList(n__cons(V1, V2)) → and(isNat(activate(V1)), n__isNatIList(activate(V2)))
isNatList(n__take(V1, V2)) → and(isNat(activate(V1)), n__isNatIList(activate(V2)))
activate(n__isNatIList(X)) → isNatIList(X)
isNat(n__length(V1)) → isNatList(activate(V1))
activate(n__isNatList(X)) → isNatList(X)
activate(n__nil) → nil
isNat(n__0) → tt
U31(tt, IL, M, N) → cons(activate(N), n__take(activate(M), activate(IL)))
U21(tt) → nil
U11(tt, L) → s(length(activate(L)))
zeros → cons(0, n__zeros)
length(nil) → 0
isNatList(n__nil) → tt
isNatIList(n__zeros) → tt
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDPOrderProof
↳ QDP
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
ISNAT(n__s(n__s(x0))) → ISNAT(s(activate(x0)))
ISNATLIST(n__cons(n__take(x0, x1), y1)) → AND(isNat(take(activate(x0), activate(x1))), n__isNatList(activate(y1)))
ISNATLIST(n__cons(n__length(x0), y1)) → AND(isNat(length(activate(x0))), n__isNatList(activate(y1)))
ISNATILIST(n__cons(n__take(x0, x1), y1)) → AND(isNat(take(activate(x0), activate(x1))), n__isNatIList(activate(y1)))
ACTIVATE(n__and(n__isNatList(x0), y1)) → AND(isNatList(x0), y1)
ISNATLIST(n__cons(n__and(x0, x1), y1)) → AND(isNat(and(activate(x0), x1)), n__isNatList(activate(y1)))
ISNATILIST(n__cons(n__isNatList(x0), y1)) → AND(isNat(isNatList(x0)), n__isNatIList(activate(y1)))
ISNATLIST(n__cons(x0, y1)) → AND(isNat(x0), n__isNatList(activate(y1)))
ISNATILIST(n__cons(n__cons(x0, x1), y1)) → AND(isNat(cons(activate(x0), x1)), n__isNatIList(activate(y1)))
ISNATLIST(n__cons(n__0, y1)) → AND(isNat(0), n__isNatList(activate(y1)))
ACTIVATE(n__and(n__length(x0), y1)) → AND(length(activate(x0)), y1)
ACTIVATE(n__and(n__and(x0, x1), y1)) → AND(and(activate(x0), x1), y1)
ACTIVATE(n__and(X1, X2)) → ACTIVATE(X1)
ACTIVATE(n__s(X)) → ACTIVATE(X)
ACTIVATE(n__isNatList(X)) → ISNATLIST(X)
ISNATLIST(n__cons(n__isNatIList(x0), y1)) → AND(isNat(isNatIList(x0)), n__isNatList(activate(y1)))
ACTIVATE(n__and(n__isNat(x0), y1)) → AND(isNat(x0), y1)
ISNATLIST(n__cons(n__isNatList(x0), y1)) → AND(isNat(isNatList(x0)), n__isNatList(activate(y1)))
ISNATILIST(n__cons(n__and(x0, x1), y1)) → AND(isNat(and(activate(x0), x1)), n__isNatIList(activate(y1)))
ISNATLIST(n__cons(n__s(x0), y1)) → AND(isNat(s(activate(x0))), n__isNatList(activate(y1)))
ISNATLIST(n__cons(n__isNat(x0), y1)) → AND(isNat(isNat(x0)), n__isNatList(activate(y1)))
ACTIVATE(n__and(n__cons(x0, x1), y1)) → AND(cons(activate(x0), x1), y1)
ISNAT(n__s(n__isNatIList(x0))) → ISNAT(isNatIList(x0))
ACTIVATE(n__and(n__take(x0, x1), y1)) → AND(take(activate(x0), activate(x1)), y1)
ISNAT(n__s(n__isNat(x0))) → ISNAT(isNat(x0))
ISNATILIST(n__cons(n__length(x0), y1)) → AND(isNat(length(activate(x0))), n__isNatIList(activate(y1)))
ISNAT(n__s(n__cons(x0, x1))) → ISNAT(cons(activate(x0), x1))
ACTIVATE(n__and(n__s(x0), y1)) → AND(s(activate(x0)), y1)
ISNAT(n__s(V1)) → ACTIVATE(V1)
AND(tt, X) → ACTIVATE(X)
ISNATILIST(n__cons(n__nil, y1)) → AND(isNat(nil), n__isNatIList(activate(y1)))
ISNATILIST(n__cons(n__s(x0), y1)) → AND(isNat(s(activate(x0))), n__isNatIList(activate(y1)))
ISNAT(n__s(n__isNatList(x0))) → ISNAT(isNatList(x0))
ISNATILIST(n__cons(n__isNatIList(x0), y1)) → AND(isNat(isNatIList(x0)), n__isNatIList(activate(y1)))
ISNATLIST(n__cons(n__cons(x0, x1), y1)) → AND(isNat(cons(activate(x0), x1)), n__isNatList(activate(y1)))
ACTIVATE(n__and(x0, y1)) → AND(x0, y1)
ISNATILIST(n__cons(x0, y1)) → AND(isNat(x0), n__isNatIList(activate(y1)))
ISNAT(n__s(n__and(x0, x1))) → ISNAT(and(activate(x0), x1))
ISNAT(n__s(n__take(x0, x1))) → ISNAT(take(activate(x0), activate(x1)))
ISNATILIST(n__cons(n__isNat(x0), y1)) → AND(isNat(isNat(x0)), n__isNatIList(activate(y1)))
ACTIVATE(n__isNat(X)) → ISNAT(X)
ISNATILIST(n__cons(n__0, y1)) → AND(isNat(0), n__isNatIList(activate(y1)))
ISNATLIST(n__cons(n__nil, y1)) → AND(isNat(nil), n__isNatList(activate(y1)))
ISNAT(n__s(n__length(x0))) → ISNAT(length(activate(x0)))
ACTIVATE(n__isNatIList(X)) → ISNATILIST(X)
ISNAT(n__s(x0)) → ISNAT(x0)
ACTIVATE(n__and(n__isNatIList(x0), y1)) → AND(isNatIList(x0), y1)
The TRS R consists of the following rules:
zeros → cons(0, n__zeros)
U11(tt, L) → s(length(activate(L)))
U21(tt) → nil
U31(tt, IL, M, N) → cons(activate(N), n__take(activate(M), activate(IL)))
and(tt, X) → activate(X)
isNat(n__0) → tt
isNat(n__length(V1)) → isNatList(activate(V1))
isNat(n__s(V1)) → isNat(activate(V1))
isNatIList(V) → isNatList(activate(V))
isNatIList(n__zeros) → tt
isNatIList(n__cons(V1, V2)) → and(isNat(activate(V1)), n__isNatIList(activate(V2)))
isNatList(n__nil) → tt
isNatList(n__cons(V1, V2)) → and(isNat(activate(V1)), n__isNatList(activate(V2)))
isNatList(n__take(V1, V2)) → and(isNat(activate(V1)), n__isNatIList(activate(V2)))
length(nil) → 0
length(cons(N, L)) → U11(and(isNatList(activate(L)), n__isNat(N)), activate(L))
take(0, IL) → U21(isNatIList(IL))
take(s(M), cons(N, IL)) → U31(and(isNatIList(activate(IL)), n__and(n__isNat(M), n__isNat(N))), activate(IL), M, N)
zeros → n__zeros
take(X1, X2) → n__take(X1, X2)
0 → n__0
length(X) → n__length(X)
s(X) → n__s(X)
cons(X1, X2) → n__cons(X1, X2)
isNatIList(X) → n__isNatIList(X)
nil → n__nil
isNatList(X) → n__isNatList(X)
isNat(X) → n__isNat(X)
and(X1, X2) → n__and(X1, X2)
activate(n__zeros) → zeros
activate(n__take(X1, X2)) → take(activate(X1), activate(X2))
activate(n__0) → 0
activate(n__length(X)) → length(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(n__isNatIList(X)) → isNatIList(X)
activate(n__nil) → nil
activate(n__isNatList(X)) → isNatList(X)
activate(n__isNat(X)) → isNat(X)
activate(n__and(X1, X2)) → and(activate(X1), X2)
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
U111(tt, L) → LENGTH(activate(L))
LENGTH(cons(N, L)) → U111(and(isNatList(activate(L)), n__isNat(N)), activate(L))
The TRS R consists of the following rules:
zeros → cons(0, n__zeros)
U11(tt, L) → s(length(activate(L)))
U21(tt) → nil
U31(tt, IL, M, N) → cons(activate(N), n__take(activate(M), activate(IL)))
and(tt, X) → activate(X)
isNat(n__0) → tt
isNat(n__length(V1)) → isNatList(activate(V1))
isNat(n__s(V1)) → isNat(activate(V1))
isNatIList(V) → isNatList(activate(V))
isNatIList(n__zeros) → tt
isNatIList(n__cons(V1, V2)) → and(isNat(activate(V1)), n__isNatIList(activate(V2)))
isNatList(n__nil) → tt
isNatList(n__cons(V1, V2)) → and(isNat(activate(V1)), n__isNatList(activate(V2)))
isNatList(n__take(V1, V2)) → and(isNat(activate(V1)), n__isNatIList(activate(V2)))
length(nil) → 0
length(cons(N, L)) → U11(and(isNatList(activate(L)), n__isNat(N)), activate(L))
take(0, IL) → U21(isNatIList(IL))
take(s(M), cons(N, IL)) → U31(and(isNatIList(activate(IL)), n__and(n__isNat(M), n__isNat(N))), activate(IL), M, N)
zeros → n__zeros
take(X1, X2) → n__take(X1, X2)
0 → n__0
length(X) → n__length(X)
s(X) → n__s(X)
cons(X1, X2) → n__cons(X1, X2)
isNatIList(X) → n__isNatIList(X)
nil → n__nil
isNatList(X) → n__isNatList(X)
isNat(X) → n__isNat(X)
and(X1, X2) → n__and(X1, X2)
activate(n__zeros) → zeros
activate(n__take(X1, X2)) → take(activate(X1), activate(X2))
activate(n__0) → 0
activate(n__length(X)) → length(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(n__isNatIList(X)) → isNatIList(X)
activate(n__nil) → nil
activate(n__isNatList(X)) → isNatList(X)
activate(n__isNat(X)) → isNat(X)
activate(n__and(X1, X2)) → and(activate(X1), X2)
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.